
Git Cheat SheetGIT

Overview
When you first setup Git, set up your user name and email address so your first commits
record them properly.
git config --global user.name "My Name"
git config --global user.email "user@email.com"

About Git, GitHub and Heroku.

Git is a free and open source, distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

GitHub is the best way to collaborate around your code. Fork, send pull requests, and
manage all your public and private git repositories.

Heroku is a cloud application platform that supports a number of different programming
languages including Java, Ruby, Node.js, and Clojure—it's a new way of building and
deploying web apps.

Basic Git Workflow Example
Initialize a new git repository, then stage all the files in the directory and finally commit the
initial snapshot.
$ git init
$ git add .
$ git commit -m 'initial commit'

Create a new branch named featureA, then check it out so it is the active branch. then edit
and stage some files and finally commit the new snapshot.
$ git branch featureA
$ git checkout featureA
$ (edit files)
$ git add (files)
$ git commit -m 'add feature A'

Switch back to the master branch, reverting the featureA changes you just made, then edit
some files and commit your new changes directly in the master branch context.
$ git checkout master
$ (edit files)
$ git commit -a -m 'change files'

Merge the featureA changes into the master branch context, combining all your work.
Finally delete the featureA branch.
$ git merge featureA
$ git branch -d featureA

Setup & Init
Git configuration, and repository initialization and cloning.

git config [key] [value] set a config value in this repository
git config --global [key]
[value] set a config value globally for this user

git init initialize an existing directory as a
Git repository

git clone [url] clone a Git repository from a URL

git help [command] get help on any Git command

Stage & Snapshot
Working with snapshots and the Git staging area.

git status show the status of what is staged for your next commit and what
is modified in your working directory

git add [file] add a file as it looks now to your next commit (stage)

git reset [file] reset the staging area for a file so the change is not in your next
commit (unstage)

git diff diff of what is changed but not staged

git diff --staged diff of what is staged but not yet committed

git commit commit your staged content as a new commit snapshot

git rm [file] remove a file from your working directory and unstage

git gui tcl/tk GUI program to make all of these commands simpler

Branch & Merge
Working with Git branches and the stash.

git branch list your branches. a * will appear next to the
currently active branch

git branch [branch-name] create a new branch at the current commit

git checkout [branch] switch to another branch and check it out into
your working directory

git checkout -b [branch] create a branch and immediately switch to it

git merge [branch] merge another branch into your currently
active one and record the merge as a commit

git log show commit logs

git stash
stash away the currently uncommitted
modifications
in your working directory temporarily

git stash apply re-apply the last stashed changes

Share & Update
Fetching, merging and working with updates from another repository.

git remote add [alias] [url] add a git URL as an alias

git fetch [alias] fetch down all the branches from that Git
remote

git merge [alias]/[branch] merge a branch on the server into your
currently active branch to bring it up to date

git push [alias] [branch] push the work on your branch to update that
branch on the remote git repository

git pull
fetch from the URL tracked by the current
branch and immediately try to merge in the
tracked branch

Inspect & Compare
Examining logs, diffs and object information.

git log show the commit history for the currently
active branch

git log branchB..branchA
show the commits on branchA that are not
on branchB

git log --follow [file]
show the commits that changed file, even
across renames

git diff branchB...branchA
show the diff of what is in branchA that is
not in branchB

git show [SHA]
show any object in Git in human-readable
format

gitx tcl/tk program to show the commit log in
a GUI

http://developer.salesforce.com

Deploying to Heroku with Git
Use the heroku command-line tool to create an application and git remote:
$ heroku create

[Creating glowing-dusk-965... done, stack is bamboo-mri-1.9.2

http://glowing-dusk-965.heroku.com/ <http://glowing-dusk-965.

heroku.com/> | git@heroku.com:glowing-dusk-965.git <x-msg://536/

git@heroku.com:glowing-dusk-965.git> Git remote heroku added]

Use git to deploy the application.
$ git push heroku master

Create an additional Heroku app for staging, and name the git remote "staging".
$ heroku create my-staging-app --remote staging

Use git to deploy the application via the staging remote.
$ git push staging master

Contributing on GitHub
To contribute to a project hosted on GitHub you can fork the project on github.com,
then clone your fork locally, make a change, push back to GitHub, and then send a pull
request, which will email the maintainer.

fork project on github
$ git clone https://github.com/my-user/project

$ cd project

$ (edit files)

$ git add (files)

$ git commit -m 'Explain what I changed'

$ git push origin master

go to github and click ‘pull request’ button

http://heroku.com

11182013For other cheatsheets: http://developer.force.com/cheatsheets

