Does the effectiveness of booster COVID-19 vaccines change over time? Results from a Living Evidence Synthesis focused on the Omicron period

Ariany M Vieira^{1,2}, Nana Wu^{1,2}, Keven Joyal-Desmarais^{1,2}, Comfort Sanuade^{1,2}, Paula A B Ribeiro¹, Mohit Jagwani¹, Jovana Stojanovic^{1,3}, Simon L. Bacon^{1,2}

¹ META group, MBMC, CIUSSS-NIM, Montreal; ² Department of health, Kinesiology, and Applied Physiology, Concordia University, Montreal;

³ Canadian Agency for Drugs and Technologies in Health, Ottawa

 Vaccine-induced antibodies are reduced at 6 months after a primary COVID-19 vaccination series and vaccine effectiveness against infections and hospitalisations might also be reduced 2–7 months after receiving a primary vaccination series. This reduction in vaccine effectiveness might be further accentuated by the emergence of new variants of concern.

PURPOSE

Organizatio

n's Practical

Guide for

Rapid

Reviews

•To review the long-term vaccine effectiveness (VE) of booster doses against COVID-19 infections, hospitalizations, and deaths.

METHODS 0 **Full primary vaccine Effectiveness of** series and an additional **Adult** Unvaccinated dose of a Canadian-**COVID-19 vaccines** general licensed COVID-19 participants against SARS-CoV-2 vaccine population

Step 1	Step 2	Step 3	Step 4	Step 5	
		Studies Selection	Data extraction		
A reviews was developed following	Search Strategy Databases: US National	verified by a se	ctracted studies, econd reviewer.	Quality assessment	
the World Health	Institutes of Health's		were resolved d reviewer.	It was done by a single	

BNT162b2, mRNA-1273,

ChAdOx1/AZD1222,

Adae COVa s

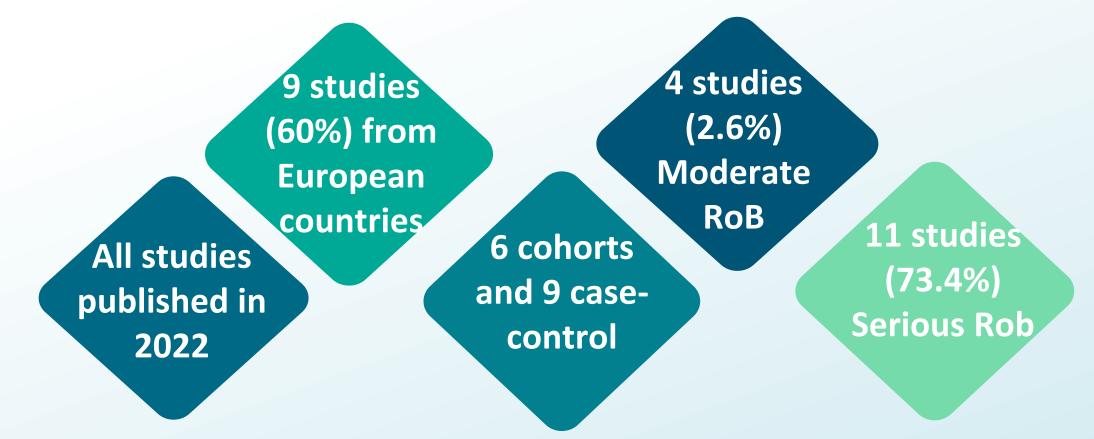
Health's We extracted vaccine (NIH) iSearch effectiveness data for SARS-COVID-19 CoV-2 infections, Portfolio7 hospitalisations, and mortality. and EMBASE Baseline: 0-28 days after the via OVID booster dose. **Follow-up:** ≥84 days post

booster.

Data Analysis Three-level metaanalytic models via the rma.mv by a single function of reviewer the metafor and verified (version by a second 3.0.2)13 reviewer. package in R (version

infections,

hospitalisations, and


mortality

Step 6

4.1.2)

RESULTS

•16.696 records were screened by title + abstract. 832 records screened full-text and 68 studies included in the overall review and 15 studies for this objective.

- VE did not meet WHO guidelines (≤70% for symptomatic infections with a lower 95% Cl of ≤50%, and ≤90% for hospitalisations or mortality with a lower 95% CI of ≤70%) at baseline, reaching 67%. And all follow-up periods had inadequate protection with a statistical reduction in VE.
- For hospitalisations, however, VE met WHO guidelines for adequate protection at baseline, reaching 89% and it kept the protection overtime in adequate level, although it statistically reduces by 74% and 71%.

	Baseline days (7–28)	Follow-up days (84–111)	Follow-up days (112–139)	l ²	σ
Documented infections	67% (95% CI 53 to 77; 95% PI –16 to 91)	51%* (95% CI 30 to 66; 95% PI –44 to 87)	40%* (95% CI 11 to 59; 95% PI –55 to 84)	32, 68	0.35, 0.51
k	11 (24)	9 (19)	7 (14)	-	-
Hospitalisati ons	89% (95% CI 82 to 93; 95% PI 59 to 97)	74%* (95% CI 60 to 83; 95% PI 8 to 93)	71%* (95% CI 51 to 83; 95% PI –6 to 92)	30 <i>,</i> 68	0.32, 0.48
k	7 (11)	8 (13)	4 (5)	-	-
Mortality	· ·	86% (95% CI 73 to 92; 95% PI 55 to 95)	•	33 <i>,</i> 60	0.22, 0.29
k	2 (2)	3 (4)	1 (1)		

 I^2 is Higgin's and Thompson's I^2 presented at the within-study and between-study levels. Σ is the estimate of τ, the SD of effect sizes in the population, presented at the within-study and between-study levels. κ=number of studies pooled (number of cohorts or observations pooled). PI=prediction interval. *VE at this follow-up timepoint is statistically different from the VE observed at baseline.

CONCLUSION

The authors state that there were no

conflicts of interests.

- COVID-19 booster protection against Omicron infection is modest at first and declines substantially.
- For hospitalizations and deaths, however, protection begins at a higher level and appears to be largely maintained over time.

