

Calibration

1E5 molbloc™ 100 slm Mass Flow Element

The 1E5 molbloc extends the range of the molbloc/molbox system using molbloc-L elements to 100 slm (nominal, N2, see range chart on overleaf).

Though the 1E5 molbloc external dimensions are similar to the 3E4 and 1E4 molblocs, it differs from all other molblocs in a number of ways that should be considered when configuring a new molbloc/molbox system or adding a 1E5 molbloc to an existing system.

Technical Data

Features

- Low differential pressure range (0 kPa to 10 kPa nominal) relative to other molblocs
- Measurement uncertainty with molbox1 of ± 0.5% of reading from 25% FS to 100% FS, 0.05% FS under 25%. Best results are obtained with molbox RFM microrange, use with molbox RFM without microrange is not recommended (see specifications on overleaf).
- High pressure calibrations are not available (full mod, upstream or downstream calibrations only).
- End fittings are 9.525 mm (0.375 in) VCR male to accommodate 12.7 mm (0.5 in) bead VCR female hardware. All other molbloc-L sizes are 6.35 mm (0.25 in) VCR male.
- Uses a special, hi flow, molstic designed for the 1E5 molbloc.

Ranges with low pressure calibrations

Full mod, low pressureDownstream			molbloc-L size and full scale flow (sccm @ 0 °C)
		Size	
	Gases	1	1E5
	Nitrogen	N ₂	100000
	Argon	Ār	80000
Inert	Helium	He	100000
H	Sulfur hexafluoride	SF ₆	_
	Xenon	Xe	30000 20000
	Butane	C ₄ H ₁₀	-
	Ethane	C ₂ H ₆	60000 50000
Flammable	Ethylene	C ₂ H ₄	70000 40000
am	Hydrogen	H ₂	200000
E	Methane	CH4	120000 40000
	Propane	C ₃ H ₈	-
suo	Carbon tetrafluoride	CF ₄	36000 25000
Fluoro-carbons	Hexafluoroethene	C ₂ F ₆	-
Fluor	Trifluoromethane	CHF ₃	38000 30000
	Air	Air	100000
Other	Carbon dioxide	CO ₂	60000 30000
	Carbon monoxide	CO	100000
	Nitrous oxide	N ₂ O	60000 30000
	Octafluorocyclobutane	C ₄ F ₈	-
	Oxygen	02	80000

A bold value indicates that the maximum flow is limited A book value indicates that the maximum HoW is limited by the maximum Reynolds number value of 1200 which is reached before the normal 1E5 differential pressure range is reached. In that case, the second value gives the minimum flow for which measurement uncertainty is \pm 0.5 % of read-ing (both molbox1 and molbox RFM). With the molbox RFM microrange option, this value is divided by 5.

Where there is no value in the table (-), this indicates that the maximum Reynolds number is reached before the differential pressure reaches 1 kPa, therefore calibration with that gas is not useful.

Ordering information

Model

1E5 VCR-V-Q molbloc mass flow element

General specifications

Flow measurement	molbox1™ (A700k or molbox1 A350k)	molbox RFM™ (with microrange option)
Measurement update rate	1 second	1 second
Range	0 slm to 100 slm depending on gas (see molbloc ranges table)	0 slm to 100 slm depending on gas (see molbloc ranges table)
Resolution	0.04 % FS	0.01 % FS
Linearity	± 0.25 % of reading from 25 % to 100 % FS, ± 0.025 % FS under 25 % FS	± 0.25 % of reading from 5 % FS to 100 % FS, ± 0.0125 % FS under 5 % FS
Repeatability	± 0.2 % of reading from 25 % to 100 % FS, ± 0.02 % FS under 25 % FS	± 0.2 % of reading from 5 % FS to 100 % FS, ± 0.01 % FS under 5% FS
Precision ¹	± 0.32 % of reading from 25 % to 100 % FS, ± 0.032 % FS under 25 % FS	± 0.32 % of reading from 5 % FS to 100 % FS, ± 0.016 % FS under 5 % FS
Predicted Stability ² (One Year)	± 0.1 % of reading from 25 % to 100 % FS, ± 0.01 % FS under 25 % FS	± 0.2 % of reading from 5 % FS to 100 % FS, ± 0.01 % FS under 5% FS
Measurement Uncertainty ³ (N_2 and any molbox supported gas for which the molbloc is calibrated)	± 0.5 % of reading from 25 % to 100 % FS, ± 0.125 % FS under 25 % FS	± 0.5 % of reading from 5 % FS to 100 % FS, ± 0.025 % FS under 5 % FS

 Precision: Combined linearity, hysteresis, repeatability.
Stability: Maximum change in zero and span over specified time period for typical molbox and molbloc used under typical conditions. As stability can only be predicted, stability for a specific molbox and molbloc should be established from experience. ³ Measurement Uncertainty: Maximum deviation of the molbox flow indication from the true value of the flow through

the molloc including precision, stability and DHI calibration standard accuracy. Measurement uncertainty is sometimes referred to as "accuracy".

Pressure dependent calibration types

Calibration type	Operating pressure	Nominal differential pressure at max flow
Full mod, low pressure	200 kPa to 325 kPa absolute 29 to 47 psi absolute upstream of molbloc	10 kPa (1.45 psi)
downstream	Atmospheric pressure downstream of molbloc	18 kPa (2.6 psi)

Fluke Calibration. Precision, performance, confidence...

Electrical RF Temperature	Pressure Flow Software
Fluke Calibration PO Box 9090, Everett, WA 98206 U.S.A. Fluke Europe B.V. PO Box 1186, 5602 BD Eindhoven, The Netherlands Web access: http://www.flukecal.eu	For more information call: In the U.S.A. (877) 355-3225 or Fax (425) 446-5716 In Europe/M-East/Africa +31 (0) 40 2675 200 or Fax +31 (0) 40 2675 222 In Canada (800)-36-FLUKE or Fax (905) 890-6866 From other countries +1 (425) 446-5500 or Fax +1 (425) 446-5116 Web access: http://www.flukecal.com
Modification of this document is not permitted without written permission from Fluke Calibration.	©2010-2014 Fluke Calibration. Specifications subject to change without notice. Printed in U.S.A. 8/2014 3191976C_EN

Pub-ID 13239-eng