Cost of Securing IEEE 802.11s Mesh Networks Using CJDNS#*

Thomas Hastings!

Abstract— The Internet is weak, it is broken, and we are
not doing anything to fix it. The Internet can be affected by
natural disasters, wars, governments, and surveillance. It is
running out of address space and the internet service providers
are not incentivized to fix it. Mesh networks, using the IEEE
standard 802.11s, may one day provide a more robust and
resilient infrastructure. Although mesh networking is not a new
idea or a new concept, wireless mesh networking is stripping
previous barriers to entry. IEEE 802.11s makes mesh networks
a reality for users who otherwise would never have been able
to setup such a distributed network.

Applications like cjdns are making it easier than ever to
create secure wireless mesh network among communities. This
paper will look at the system costs associated with using cjdns.
How much performance are we willing to sacrifice for ease of
use and security?

I. INTRODUCTION

The Internet is weak, it is broken, and we are not doing
anything to fix it. The Internet can be affected by natural
disasters, wars, governments, and surveillance [1]. It is run-
ning out of address space and the internet service providers
are not incentivized to fix it [2]. Mesh networks, using the
IEEE standard 802.11s, may one day provide a more robust
and resilient infrastructure. Although mesh networking is not
a new idea or a new concept, wireless mesh networking
is stripping previous barriers to entry. IEEE 802.11s makes
mesh networks a reality for users who otherwise would never
have been able to setup such a distributed network.

Further reducing barriers to entry, open source applications
such as cjdns are openly developed and shared across the
Internet. Cjdns boasts a couple of features that make imple-
menting a wireless mesh network simple. Cjdns implements
an encrypted IPv6 network using public-key cryptography for
address allocation and a distributed hash table for routing.
This provides near-zero-configuration networking, and pre-
vents many of the security and scalability issues that plague
existing networks [3].

There are a growing number of users on the Internet
joining mesh network communities that utilize cjdns. The
communities are typically based on geographic location. For
example, Philadelphia has a thriving mesh network group
called Philly Mesh [4]. Toronto also has a strong group
at Toronto Mesh [5]. These geographically separated mesh
networks are utilizing an open source network, Hyperboria,
that leverages the open Internet to connect to each other using
cjdns [6]. At what cost do these networks provide convenient
setup and privacy?

*This work was done as a semester project for CS 5960 at the University
of Colorado at Colorado Springs school of Applied Science and Engineering

1Thomas Hastings is an MESE graduate student at the University of
Colorado at Colorado Springs thastingQuccs.edu

II. BACKGROUND

In this section I explain the basics of IEEE 802.11s, some
of the history of the protocol, and I explain how cjdns works
at a high level.

A. IEEE 802.11s

IEEE 802.11s is an amendment to IEEE 802.11 Wireless
Local Area Network. In 2012 the amendment was officially
added to the specification. The protocol integrates mesh
networking services and protocols with 802.11 at the MAC
layer. The primary scope of the amendment was to create a
wireless distribution system with automatic topology learn-
ing and wireless path configuration. The amendment includes
dynamic data delivery via unicast and broadcast as well as
multicast [12].

B. cjdns

Cjdnss creator, Caleb James DeLisle, has a vision and a
mission for cjdns. He wants everyone to be able to setup
and host mesh networks if they wish to do so. He wants
the network to be secure from espionage and forgery. He
also wants to make it easier for individuals or companies to
provide Internet services to the masses. Cjdns is made up
of three main components. The components are dependent
on the other components. If one component malfunctions or
fails to operate correctly then the entire node is disabled.

1) The Switch: The first component is the switch. The
switch passes packets to a director based on the least sig-
nificant bits of the routing label. The director, a component
within the switch, knows the next interface in the path and
passes the data along.

Example: Supposing Alice wanted to send a packet to
Fred via Bob, Charlie, Dave and Elinor, she would send a
message to her switch with the first Director instructing her
switch to send down its interface to Bob, the second Director
instructing Bob’s switch to send to Charlie and so on [2].

2) The Router: The second component is the router. The
router is responsible for identifying the most efficient path
for packets to take in order to reach the requested node. The
router listens for searches that are sent out by other routers.
The searches provide network information to other routers on
the mesh network. The router must also respond to searches
from other routers in order to help map the mesh network.
Lastly, the router forwards packets based on the responses
previously collected.

3) The CrytoAuth: The third, and final component, is the
crytpoauth. The crytpoauth provides a wrapper for interfaces.
The interface allows users to send and receive encrypted
packets. The cryptoauth is also responsible for the initial

handshake packets which allows nodes to join the mesh
network. The overhead for the packets passing through the
cryptoauth is 120 bytes [2].

ITI. ANALYSIS DESIGN

The final goal of this study is to determine the cost
associated of cjdns on mesh networks. In this section I
provide an overview or my analytical procedure in two
phases.

A. Collecting Phase

The first step in the collecting phase is to identify common
metrics that I could use across the hardware. I decided to
use the bandwidth throughput as a measurement. One of
the challenges I ran into was that bandwidth throughput
as a measurement was not the only measurement that I
needed to track. I found that my hardware was limited in
terms of CPU cycles when running cjdns. In addition to
collecting throughput measurements I also collected CPU
measurements.

B. Analysis Phase

After the collecting phase I began to group analyze the
measurements. This was a fairly simple process due to the
nature of the measurements. The outcome, however, was
surprising.

IV. IMPLEMENTATION

I used two Raspberry Pis, one version 1 model B and

one version 2 Model B, two TP-Link N150 wireless high

gain adapters, one Linksys WRT54G router, and a laptop to
implement the experiment.

() (o)

. BOZAls
Encrypted Traffic

Raspbrry Pi Raspberry Pi

Command and Conirol

Linksys{Router

Y

Fig. 1. Implementation Diagram

A. Raspberry Pis

I flashed the Raspberry Pis with the Raspian Jessie oper-
ating systems. Raspian is based off of the popular Ubuntu
Linux. I then installed cjdns on each of the Pis. I placed one
of the TP-Link N150 wifi usb dongles in each of the Pis and
configured the dongles to broadcast using 802.11s. Both Pis
broadcast an SSID of tomsmeshnetwork. Due to the how I
configured cjdns and because both Pis shared the same SSID
the Pis auto connected and formed a simple two node mesh
network. A screenshot of the Pis’ console is in Fig 2.

File Edit view Search Terminal Help
Last login: Tue May 2 22:31:41 2017 from fcb4:7eaf:b86T:69b2:d165:f7fa:a466:d83
2

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd’' to set
a new password.

cjdns Service .
Mesh Interface

NODE

fc9d: f4d4:3745:7ef:89d:59e7: c65c:d637
PEERS

fch4:7eaf:ba6f:69b2:d165: f7fa:ad66:da32
fchd:7eaf:b86f:69b2:d165: f7fa:ad66:d832

File Edit view Search Terminal Help
permitted by applicable law.
Last login: Tue May 2 22:30:00 2017 from 192.168.1.102

SSH 1is enabled and the default password for the "pi’ user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd’ to set
a new password.

cjdns Service ...
Mesh Interface ..
NODE

fchd:7eaf:b86f:69b2:d165: f7fa:ad66:d832
PEERS

fead: T4d4:3745:7ef:83d:59e7: c65c:d637
fcod: f4d4:3745:7ef:89d:59e7: c65c: 63T

Fig. 2. Raspberry Pi Console

B. Command and Control

I used the Linksys WRT54G as a hub to interact with the
Pis. I plugged each Pi into the router and then I attached
my laptop to the router as well. This gave me the ability to
ssh into one of the nodes and interact with the other node
of the 802.11s mesh. This is also how I was able to collect
the required metrics needed to identify the cost of of cjdns.

C. Iperf3

I was able to ssh onto one of the nodes using the Linksys
router. Once there I used an application that I installed on
both Pis called Iperf3. Iperf3 is a client / server application
that measures bandwidth throughput. I was able to use the
Pis IPv6 address from the node to connect one node to the
other and pass data across.

D. Top

Top is a Linux command that displays processor activity
and tasks that are managed by the kernel in real-time. Its
similar to the Application Manager on Windows that shows
processes and hardware / system utilization.

E. Data Collection

I'ran 10 total tests across each of the Pis. Each test consists
of passing data from node 1 to node 2 and then from node
2 back to node 1. In addition to the bandwidth throughput
tests 1 took samples of the CPU usage and recorded the
measurements.

V. MEASUREMENTS

Sample measurements can be seen in Fig 3 and Fig 4.

Terminal Help

Accepted connection from fch4:7eaf:b86f:69b2:d165:F7fa:a466:d832, port 48546
[5] local fc9d:f4d4:3745:7ef:89d:59e7:c65c:d637 port 5201 connected to fchd:7e
af:b86f:69b2:d165: f7fa:a466:d832 port 48548

[ID] Interwval Transfer Bandwidth Retr Cwnd

[5] 0.00-1.00 sec 414 KBytes 3.39 Mbits/sec 1 36.1 KBytes

[5] 1.00-2.00 sec 271 KBytes 2.22 Mbits/sec 0 40.9 KBytes

[5] 2.00-3.00 sec 245 KBytes 2.01 Mbits/sec 0 45.7 KBytes

[5] 3.00-4.00 sec 354 KBytes 2.90 Mbits/sec 0 56.5 KBytes

[51 4.00-5.00 sec 354 KBytes 2.90 Mbits/sec 4] 80.6 KBytes

[5] 5.00-6.00 sec 438 KBytes 3.59 Mbits/sec 0 117 KBytes

[5] 6.00-7.00 sec 0.00 Bytes 0.00 bits/sec 109 66.2 KBytes

[5] 7.00-8.00 sec 375 KBytes 3.08 Mbits/sec 32 60.2 KBytes

[5] 8.00-9.00 sec 188 KBytes 1.54 Mbits/sec 4] 67.4 KBytes

[5] 9.00-10.00 sec 375 KBytes 3.08 Mbits/sec 47 52.9 KBytes

[5] 10.00-10.10 sec 0.00 Bytes 0.00 bits/sec 1] 52.9 KBytes

[ID] Interwal Transfer Bandwidth Retr

[51 0.00-10.10 sec 2.94 MBytes 2.44 Mbits/sec 189 sender
[51 0.00-10.10 sec 2.73 MBytes 2.27 Mbits/sec receiver

File Edit View Search

Terminal Help

iperf3 homepage at: http://software.es.net/iperf/
Report bugs to: https://github.comfesnet/iperf
- 5 iperf3 -R -c fc9d:f4d4:3745:7ef:89d:59e7:c65c:d637
Connecting to host fc9d:f4d4:3745:7ef:89d:59e7:¢65c:d637, port 5201
Reverse mode, remote host fc9d:f4d4:3745:7ef:89d:59e7:c65c:d637 is sending
[4] local fch4:7eaf:b86f:69b2:d165:T7fa:a466:d832 port 48548 connected to fcod
:f4d4:3745:7ef:89d:59e7:c65c:d637 port 5201
[ID] Interwal Transfer Bandwidth

[41 0.00-1.00 sec 284 KBytes 2.33 Mbits/sec
[4] 1.00-2.00 sec 282 KBytes 2.31 Mbits/sec
[41 2.00-3.00 sec 322 KBytes 2.64 Mbits/sec
[4] 3.00-4.00 sec 256 KBytes 2.10 Mbits/sec
[41 4.00-5.00 sec 300 KBytes 2.45 Mbits/sec
[4] 5.00-6.00 sec 271 KBytes 2.22 Mbits/sec
[41 6.00-7.00 sec 196 KBytes 1.61 Mbits/sec
[4] 7.00-8.00 sec 242 KBytes 1.98 Mbits/sec
[41 8.00-9.00 sec 209 KBytes 1.71 Mbits/sec
[4] 9.00-10.00 sec 307 KBytes 2.51 Mbits/sec

[ID] Interwal Transfer Bandwidth Retr

[41 0.00-10.00 sec 2.94 MBytes 2.47 Mbits/sec 189 sender
[4] 0.00-10.00 sec 2.73 MBytes 2.29 Mbits/sec receiver
iperf Done.

~s]]

Fig. 3. Bandwidth Throughput - Measurement

VI. EVALUATION
This section provides the evaluation of the measurements
that were taken previously during the implementation phase.

A. Unencrypted

Raspberry Pi Model B — 37.9 Mbit/s
Raspberry Pi 2 Model B - 75.3 Mbit/s

B. cjdns

Raspberry Pi Model B - 2.27 Mbit/s
Raspberry Pi 2 Model B - 3.10 Mbit/s

63 root 20 0 0 0 0S 3.8 0.0 0:02.37 kworker/u2:2
2 root 20 0 0 0 0SsS 0.0 0.0 0:00.00 kthreadd
893 nobody 20 0 3308 2552 2212 R 95.4 0.6 1:10.14 cjdroute
1029 pi 20 0 5100 2472 2140 R 1.9 0.6 0:00.19 top
1019 root 20 0 0 0 05 1.0 0.0 0:03.66 kworker/u2:1
3 root 20 0 0 0 0s 0.3 0.0 0:00.98 ksoftirqd/o
63 root 20 0 0 0 05 0.3 0.0 0:02.38 kworker/u2:2
944 pi 20 0 11544 3432 27725 0.3 0.8 0:00.67 sshd
1028 pi 20 0 2092 1568 1360 5 0.3 0.4 0:00.08 iperf3
1 root 20 0 5412 3736 2676 5 0.0 0.8 0:06.51 systemd
2 root 20 0 0 0 0SS 0.0 0.0 0:00.00 kthreadd
4 root 20 0 0 0 0S 0.0 0.0 0:00.12 kworker/0:0
5 root 0 -20 0 0 05 0.0 0.0 0:00.00 kworker/0:0H
7 root 20 0 0 0 0S 0.0 0.0 0:00.01 kdevtmpfs
8 root 0 -20 0 0 05 0.0 0.0 0:00.00 netns
9 root 0 -20 0 0 0sS 0.0 0.0 0:00.00 perf
10 root 20 0 0 0 0S5 0.0 0.0 0:00.00 khungtaskd
11 root 0 -20 0 0 0S 0.0 0.0 0:00.00 writeback
12 root 0 -20 0 0 05 0.0 0.0 0:00.00 crypto
13 root 0 -20 0 0 0sS 0.0 0.0 0:00.00 bioset
[4] 3.00-4.00 sec 375 KBytes 3.07 Mbits/sec 0 97.5 KBytes
[4] 4.00-5.00 sec 500 KBytes 4.10 Mbits/sec 1] 116 KBytes
SO0=6 w375 KByiwy 307 Wiy 0 TS KByiwy

Fig. 4. Top - CPU Usage - 93%

C. Limiting Factors

Both Raspberry Pis during the test maintained an average
of 99.35% CPU utilization. This leads me to believe the
limiting factor may not necessary be the radio or transmission
of packets. Rather, I believe the limiting factor in this
experiment was the hardware.

VII. CHALLENGES

I faced a couple of challenges while working on this
research project. The first challenge was with the hardware
that I picked. Cjdns no longer supports the Raspberry Pi 1
Model B. In order to overcome this challenge I had to use
cjdns version 18 on that Raspberry Pi. I was also limited
to 2.4GHz for this exercise due to the USB WiFi dongle
I choose. I dont believe this really impacted the outcome
of the project because of the hardware limitations. Lastly, I
reached the threshold for the hardware. The CPU was under
so much load that it makes it hard to determine if the low
bandwidth throughput is due to the 802.11s standard or due
to the limited processing power on the Raspberry Pis.

VIII. RELATED WORK

IEEE 802.11s is a growing topic of research due to the
growing popularity of mesh networks. Many have researched
and presented topics on 802.11s. There are a few good papers
with ideas on how to secure 802.11s but few get to the
implementation.

A. Security Based Analysis

One of the few papers that provide an implementation
offers a protocol called SHWMP [9]. SHWMP differs from
cjdns because it is only using crytographic extensions to
provide authenticity which is similar to cjdns but is lacking
features that cjdns provides. In addition to encryption cjdns
provides distributed hash tables for routing and auto configu-
ration features that allow nodes to automatically connect and
join mesh networks.

B. State of the World Based Analysis

Hal Hodson published an article in the New Scientist titled,
Lets Start The Net Again which was published on August 10,
2013 [8]. Hal doesnt dive into the protocol but he discusses
how mesh networks are beginning to take shape from coast
to coast. Hal talks about cjdns and how the software is core
to the mesh networks.

C. Benchmarks

The Philly Mesh group has benchmarks for multiple
devices including the Raspberry Pis. Their most promising
benchmark is with a device called an Odroid-c2 [5]. You can
see their benchmark in fig 5.

$ iperf3 -t6@ -c CJDNS_PEER_IP_ON_LAN

[ID] Interval Transfer Bandwidth Retr
[4] 0.00-60.01 sec 754 MBytes 105 Mbits/sec 367
[4] 0.00-60.01 sec 753 MBytes 105 Mbits/sec

$ iperf3 -R -t60 -c CJDNS_PEER_IP_ON_LAN

[ID] Interval Transfer Bandwidth
[4] 0.00-60.00 sec 426 MBytes 59.6 Mbits/sec
[4] 0.00-60.00 sec 426 MBytes 59.6 Mbits/sec

Fig. 5. Philly Mesh Odroud-c2 Benchmark

IX. FUTURE WORK

For future work I would like to use hardware with better
specifications. Perhaps using an Odroid C2 would make a
difference. The Odroid has a faster processor, more RAM,
USB 3.0 ports, and a gigabit ethernet port. I would also like
to try and connect multiple devices to one node and pass data
to other nodes in the network using the one node. With the
current setup only one device can be connected to a node at
a time. I would like to add a WiFi access point that provides
devices access to a single node and use the node as a point of
contact for the devices to communicate on the mesh network.

X. CONCLUSIONS

The main purpose of this study is the analyze the cost of
using cjdns to secure mesh networks over IEEE 802.11s. The
cost is high when using a Raspberry Pi due to the Pis hard-
ware. The bandwidth throughput dropped over 90% when
using cjdns on Raspberry Pis. I believe applications like cjdns
are going to usher in a new era of connected communities.
We need to put more resources towards mesh networks and
more resources towards developing applications like cjdns.

REFERENCES

[1] Its Time To Take Mesh Networks Seriously (And Not Just For The
Reasons You Think)www.wired.com/2014/01/its-time-to-take-mesh-
networks-seriously-and-not-just-for-the-reasons-you-think/ 2014. Web.
10 May 2017.

[2] “cjdelislecjdns”, GitHub, 2017. [Online]. Available:
github.com/cjdelisle/cjdns/blob/master/doc/Whitepaper.md.
[Accessed: 10- May- 2017].

[3] “cjdelislecjdns”, GitHub, 2017. [Online]. Available:

github.com/cjdelisle/cjdns. [Accessed: 10- May- 2017].

[6]
[7]
[8]
[9]

(10]

"IEEE SA - 802.11s-2011 - IEEE Standard for Information
Technology-Telecommunications and information exchange
between systems—Local and metropolitan area networks—Specific
requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications Amendment 10:
Mesh Networking”, Standards.ieee.org, 2011. [Online]. Available:
standards.ieee.org/findstds/standard/802.11s-2011.html. [Accessed:
10- May- 2017].

Phillymesh.net, 2017. [Online]. Available: phillymesh.net/. [Accessed:
10- May- 2017].

”Toronto Mesh”, Tomesh.net, 2017. [Online]. Available: tomesh.net/.
[Accessed: 10- May- 2017].

“Hyperboria”, Hyperboria.net, 2017. [Online]. Available: hyperbo-
ria.net/. [Accessed: 10- May- 2017].

Hodson, Hal, New Scientist. 8/10/2013, Vol. 219 Issue 2929, p20-21.
2p.

Hodson, Hal, New Scientist. 8/10/2013, Vol. 219 Issue 2929, p20-21.
2p.

M. S. Islam, M. A. Hamid, and C. S. Hong, SHWMP: A Secure Hybrid
Wireless Mesh Protocol for IEEE 802.11s Wireless Mesh Networks,
Transactions on Computational Science VI Lecture Notes in Computer
Science, pp. 95114, 2009.

