INNOC

Advanced |IAM
Patterns and
Strategies

Designing trust foundations
for distributed systems

Advanced |IAM Patterns &
Strategies

Dimitrij Drus

innoQ Deutschland GmbH
KrischerstraBe 100 - 40789 Monheim am Rhein - Germany
Phone +49 2173 33660 - www.INNOQ.com

Layout: Tammo van Lessen with XglATEX
Design: Murat Akgoz
Typesetting: André Deuerling

Advanced IAM Patterns & Strategies — Designing Trust Foundations
for Distributed Systems

Published by innoQ Deutschland GmbH

1st Edition - January 2026

Copyright © 2026 Dimitrij Drus

Voices From The Field

When I speak to teams about security, identity, and how to secure microservices in the
real world, the question is rarely about what tool, and more about how do you approach
solutions strategically. Resources tend to provide high level advice, but rarely go into how
to actually arm professionals with details and considerations to make the right choice for
their own business. This guide has been tremendously helpful in filling in that gap and is
a go-to resource of mine when speaking with security and development teams.

Karl Lewis, Founder, Cloud Native CISO

This critique of the OWASP Microservice Security Cheat Sheet highlights where the guide
falls short and sparks a call for deeper, more modern guidance so teams don’t end up
defaulting to weak or risky authorization choices. It's only getting harder with the
introduction of AI and MCP, so this guide is timely in calling for us to evaluate the
security of critical infrastructure.

Mike Schwartz, Founder & CEO, Gluu

Contents

Preface
Relation to the OWASP Cheat Sheets Project..................
Navigating This Primer ...
How to Read This Primer
Acknowledgments ...
Some Last Words ...

1 Core Concepts
11 Authorization Reference Architecture......................
1.2 A Story to Ground the Conceptscooviiiiiiiiin...
1.3 Policy Representations and Lifecycle.......................
1.4 First-Party vs. Third-Party ...,
1.5 On Subjects, Principals and Identities......................

2 Authentication Patterns
21 Introduction to Authentication Patterns
2.2 Service-Level Embedded Authentication
2.3 Service-Level Code-Mediated Authentication.............
2.4 Service-Level Proxy-Mediated Authentication
2.5 Edge-Level Authentication ...l
2.6 Kernel-Level Authentication ...t

2.7 Operational and Security Considerations

3 Identity Propagation Patterns
3.1 External Identity Propagation..................oollL
3.2 Simple Service-Level Identity Forwarding
3.3 Token Exchange-Based Identity Propagation
3.4 Protocol-Agnostic Identity Propagation
3.5 OnPrivacy By-Designcoviiiiiiiiiiii i

4 Authorization Patterns
41 Decentralized Service-Level Authorization
4.2 Centralized Service-Level Authorization...................
4.3 Edge-Level Authorization (Classic)cccovviiiinin...
4.4 Edge-Level Authorization (Modern).............cocovvn.n.
4.5 Sidecar-Level Authorization ...t
4.6 PDP Deployment & Integration Options

5 Decision Dimensions for Authorization Patterns
51 Policy Characteristics ..o
5.2 Policy Distribution StrategiescooiiiiiiL.
5.3 Data Characteristicso.oviuiiiiiiii i
5.4 Policy Input Data Distribution Strategies
5.5 Policy Output Data Handling Patterns
5.6 Performanceo
5.7 What's next ..o

6 Practical Considerations & Recommendations
6.1 Authorization Patterns Recommendations................
6.2 Data and Policy Distribution in Practice
6.3 Policy Input Data Governanceccovviiiniiinninnnnnn,
6.4 Interplay Between Authorization, Authentication, Iden-

tity Propagation Patterns, and Zero Trust.................
6.5 Authentication, Identity Propagation, and Authoriza-
tion Patternsin Practice ...
7 Final Words
8 Aboutus

About the author

Preface

Distributed systems have changed significantly over the past decade. Microser-
vices, APIs, and increasingly interconnected components have become the norm,
and identity information now moves through these systems in ways that earlier
security guidance rarely anticipated. Yet in many organizations, decisions are still
based on documents that reflect assumptions which do not always align with
today’s architectural realities.

A good example is the OWASP Microservices Security Cheat Sheet . It reflects
ideas from several standards in a developer-friendly way, contains valuable guid-
ance, and has shaped the thinking of many teams. But it also leaves important
questions unanswered. Some of its patterns are described too briefly to offer
real guidance, a few contain contradictions, and some rely on examples that fit
only specific contexts”. In practice, these gaps often lead to fragile or “accept-by-
default” designs and implementations.

And that brings us to a broader, more subtle issue I encounter regularly in my work.
It is not just about the cheat sheet itself, but also about how such documents are
used. As part of my job, I often try to help teams at different organizations make
better decisions based on real-world risk and context. But the moment I question
a practice that is claimed to be based on OWASP or similar guidance, I usually get
immediate pushback:

Because of this, practices that may be risky or outdated can become immune
to scrutiny simply because they are rooted in a respected source. This dynamic
makes it difficult to challenge entrenched guidance, even when there are good

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Microservices_Securi
ty_Cheat_Sheet.md

A detailed discussion of these points, including specific examples from the cheat sheet, can be
found in the first post of the blog series on which this book is based.

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Microservices_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Microservices_Security_Cheat_Sheet.md

reasons to do so. As noted earlier, this phenomenon isn’t unique to OWASP.
Similar issues have emerged around other well-known guidance, such as the
widely adopted but later reconsidered NIST password policies originally shaped
by Bill Burr, whose own reflections™ highlight how even well-intentioned recom-
mendations can unintentionally lead to widespread problems when the context
changes.

These observations eventually led to a conference talk" I gave at OWASP AppSec
EU 2025". Although the abstract only hinted at it, the talk examined several gaps
in the Microservices Security Cheat Sheet and outlined possible ways to rethink
some of its underlying patterns. Shortly before the talk, Jim Manico - one of the
chairs of the OWASP Cheat Sheets Project - suggested that it would be great if
I opened a pull request with an improved version of the cheat sheet during the
session. I hadn’t planned for that and certainly hadn’t prepared a rewrite. But his
remark stayed with me. Combined with colleagues repeatedly encouraging me
to write down the explanations I often shared on projects, it felt like the right
moment to put these ideas into a more structured form.

When I returned home, I began drafting a revised version of the cheat sheet.
Very quickly it became obvious that the material had grown far beyond what
could reasonably fit into such a format. The concepts, patterns, and decision
points needed more space - and in some cases, the patterns themselves had
no established terminology at all. That raised a different question: how do I
collect feedback, validate the descriptions, and refine the terminology before
contributing anything back?

The answer turned out to be a blog series”. Several colleagues who reviewed the
early drafts independently suggested the same approach. That is how the series
came into being, and how the content that eventually grew into this book first took
shape - with the aim of providing a clearer foundation for authentication, identity

https://www.cbsnews.com/video/man-who-suggested-random-ever-changing-passwords-reg
rets-that-guidance/

https://owaspz2o2sglobalappseceu.sched.com/event/iwh8k/the-edge-strikes-back-challenging
-owasps-take-on-edge-level-authorization

https://owasp.glueup.com/event/owasp-global-appsec-eu-2025-123983/

https://www.innoq.com/en/blog/2025/07/whats-wrong-with-the-current-owasp-microservic
e-security-cheat-sheet/

https://www.cbsnews.com/video/man-who-suggested-random-ever-changing-passwords-regrets-that-guidance/
https://www.cbsnews.com/video/man-who-suggested-random-ever-changing-passwords-regrets-that-guidance/
https://owasp2025globalappseceu.sched.com/event/1wh8k/the-edge-strikes-back-challenging-owasps-take-on-edge-level-authorization
https://owasp2025globalappseceu.sched.com/event/1wh8k/the-edge-strikes-back-challenging-owasps-take-on-edge-level-authorization
https://owasp.glueup.com/event/owasp-global-appsec-eu-2025-123983/
https://www.innoq.com/en/blog/2025/07/whats-wrong-with-the-current-owasp-microservice-security-cheat-sheet/
https://www.innoq.com/en/blog/2025/07/whats-wrong-with-the-current-owasp-microservice-security-cheat-sheet/

propagation, and authorization in distributed systems, where conceptual misun-
derstandings most often translate into real-world vulnerabilities. The patterns
described in the following chapters are intended to help you evaluate trade-offs,
understand where certain approaches work well, and see where they fall short.

Relation to the OWASP Cheat Sheets
Project

You may now be wondering what happened to the intention to update the OWASP
Microservices Security Cheat Sheet, or - if you have looked at it recently - what
exactly I was referring to in the previous chapter. Depending on when you’re
reading this primer, one or the other situation may well apply.

In fact, as I write this primer, roughly half of the content from the blog series
has already been transformed into new OWASP Cheat Sheets, but they have
not yet been officially published - yes, several cheat sheets have been created or
are currently in progress. This is simply because these documents build on one
another, and the new Microservices Security Cheat Sheet, at least as currently
planned, is meant to serve as an overarching document for the others. Once all of
them are ready, they will be published together, creating an entirely new category
of cheat sheets-architectural security-something the project hasn’t had before.

As this primer predates the completion of that work, it can be seen as the second
iteration of the knowledge consolidation that began with the blog series. Some
parts have indeed been updated and expanded. Accordingly, the new cheat sheets
may be understood as a third iteration and will likely contain additional refine-
ments - or may already do so, depending on when you read this book.

Navigating This Primer

This primer is structured around six numbered chapters, each building on the
concepts introduced before it. The actual content begins with Core Concepts,
which provides the foundation for all that follows. To help you orient yourself, I'll
outline what each chapter covers and how the pieces fit together.

Asalready mentioned, Chapter 1- Core Concepts establishes the terminology
and mental models used throughout the primer: subjects and identities, first-
and third-party contexts, policy lifecycles, trust boundaries, and the architec-
tural reference model that underpins the later patterns. If you are unfamiliar
with these ideas, this is the chapter to read carefully. The rest of the book
assumes you have these concepts in mind.

Chapter 2 - Authentication Patterns examines different architectural ap-
proaches to authentication. It focuses on trade-offs and constraints rather than
prescribing a single “correct” pattern. Frankly, this also applies to every other
chapter in this primer.

Modern distributed systems rely on identity flowing between components.
Chapter 3 - Identity Propagation Patterns explores how this is done in
practice, what can go wrong, and what different identity propagation strategies
imply. It provides the conceptual bridge between authentication and authoriza-
tion.

Chapter 4 - Authorization Patterns describes where and how authorization
decisions can be made: embedded enforcement, externalized PDPs, and fur-
ther variants. It shows how architectural choices influence security properties,
operational flexibility, and failure modes.

Authorization patterns are rarely “good” or “bad” in isolation. Chapter 5 -
Decision Dimensions for Authorization Patterns introduces a structured
way to analyze them using multiple dimensions - such as policy complexity,
performance, or availability requirements - so you can evaluate which patterns
fit your system’s needs.

The final Chapter 6 - Practical Considerations & Recommendations pulls
the threads together and looks at real-world implications: operational pitfalls,
deployment scenarios, governance and lifecycle challenges, and how to evolve
trust architectures over time. It is the most applied chapter and best read after
the preceding ones.

How to Read This Primer

If you are new to the topic, reading the chapters in order will give you a co-
herent, cumulative understanding of authentication, identity propagation, and
authorization in distributed systems. If you already have experience with some
of these areas, you may choose to focus on specific chapters - for example, if
you are primarily interested in access control, you may start with Authorization
Patterns, visiting Core Concepts for orientation as needed.

Wherever you begin, the intention of this primer is to offer a foundation of
concepts and patterns that you can adapt to your own context. There is no silver
bullet, and every system has its own requirements, constraints, and trade-offs.
Use the material here for reasoning, experimentation, and refinement.

Acknowledgments

Neither the blog series this primer builds on, nor the primer itself, nor even my
involvement in the OWASP Cheat Sheets Project would likely exist without an
early exchange I had with Jim Manico. His encouragement - and the well-timed
“push” that came with it - convinced me to turn an initial critique into something
more substantial. Without that nudge, I might never have started writing any of
this.

I also want to thank my colleagues Martina Meng, Dominik Guhr, Timo Loist, Gil
Breth, and Felix Schumacher. Your reviews, questions, and different perspectives
helped me sharpen my thinking in ways I could not have done alone. Many ideas
in this work exist because you challenged me, and many others became clearer
through our discussions. Thank you all for the time, honesty, and patience you

invested along the way.

And above all, I want to thank my wife and my daughters. This work came with its
share of long evenings spent writing, and more than once I was less present than
I should have been. Their patience and understanding made it possible for me to
bring this project to an end, and I am deeply grateful for that.

Some Last Words

Naming is hard, and the world of authentication and authorization is no exception.
Many terms are overloaded or misleading. Take HTTP’s 401 Unauthorized, for
example: despite its name, it represents an authentication error - returned when
credentials such as a username or password are missing or invalid. The 403
Forbidden status is reserved for true authorization failures. Confusing, right?

To avoid this kind of ambiguity and to make discussions clearer, I've tried to
establish a consistent and understandable vocabulary throughout my work - a
kind of ubiquitous language, if you like - to make the topics easier to follow and
reason about.

Please also note that several of the patterns described here do not currently exist
in other literature, at least to the best of my knowledge. Therefore, if something
doesn’t quite make sense or feels off, please bear with me - and feel free to
question it. The field is evolving, and so is our shared understanding.

Last, but not least, your feedback, insights, and experiences are always welcome,
so we can continue to learn from one another.

1 Core Concepts

This chapter defines the core terminology and architectural concepts used
throughout the primer. The patterns in later chapters rely on these foundations,
so familiarity with them is essential.

1.1 Authorization Reference Architecture

To lay the foundation for the patterns described in this primer, this chapter
introduces the general building blocks of an authorization system, based on NIST
SP 800-162 . While that standard focuses on Attribute-Based Access Control
(ABAC), the conceptual roles it defines are relevant to nearly any access control
system.

. Policy Enforcement Point y
O S E— |
Subject (PEP) Object

i e -] Policy Decision Point
Policy ﬁ uses (PDP)
- resides in": H
v l

Policy Information Point

Policy Administration Point ¢ RS
Attribute Repository,

> : — —
Policy Repository |

Figure 1.1: Authorization Reference Architecture

These roles are:

Subject: An active entity (e.g., a user, application, or device) that attempts to
perform an action on an Object.

Object: A passive entity (e.g., a file, an insurance record, or a blog article), that
is the target of an action attempted by the Subject.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

Policy: A set of rules that define who is allowed to do what under which
conditions - for example, “Managers can approve expenses under $1000”, or
“Users can access documents they own”. Policies are evaluated at runtime
using attributes of the user, the resource, and the context (such as time, or
location).

Policy Enforcement Point (PEP): The component that intercepts a request
and enforces the outcome of an authorization decision, allowing or denying
the request.

Policy Decision Point (PDP): Evaluates policies and computes authorization
decisions based on the incoming request and available data.

Policy Information Point (PIP): Supplies attribute data or contextual infor-
mation that the PDP requires to evaluate a policy.

Policy Administration Point (PAP): Allows management of access control
policies by providing tools for authoring, testing, and maintaining them.

1.2 A Story to Ground the Concepts

Imagine Alice wants to read an article on her favorite blog platform. In this
story:

Alice is the subject.

The article she wants to read is the object.

The action (“read”) is what she wants to perform.

Her browser sends a request on her behalf to the platform’s backend services.

Let’s break down what happens step by step:

Each time Alice interacts with the platform - by clicking a link, submitting a
form, or opening a page - a request is made to one or more backend services.
These services must decide: Can Alice do this? and more subtly: What exactly is
Alice allowed to do in this context?

That decision process starts with the Policy Enforcement Point (PEP). Think
of the PEP as a gatekeeper - it sees the request and knows it must enforce some
kind of access control. But it doesn’t contain the logic to decide what’s allowed.
Instead, it delegates that to the Policy Decision Point (PDP).

The PDP evaluates the request against a set of policies. These policies might
include conditions like:

Alice must be logged in.
Alice must have an active subscription.
Alice can only read the full article if her subscription level is “Premium”.

To perform this evaluation, the PDP often needs more information than what’s
in Alice’s request. This is where the Policy Information Point (PIP) comes in.
In this case, one PIP is involved: a user management service that provides Alice’s
subscription information. This PIP supplies the PDP with the information needed
to evaluate the aforesaid policies.

But here’s where a crucial detail often gets missed: the PDP doesn’t always answer
a closed question like “yes” or “no”. In many cases, the PDP may answer open
questions with answers like:

Alice can read the article, but only the excerpt.

Alice can read the full article if her subscription is “Premium” or if the article
is marked as public.

Alice can read up to three full articles per day on a free plan.

Alice can read that particular set of articles

In these cases, the PDP returns a decision along with additional access context
information that describes how access is permitted, and which additional actions
to perform. This might include details like which parts of a resource are visible or
what usage limits apply. For example, if Alice is on a free plan and has already
read three full articles today, the PDP might return a “permit” decision along
with structured attributes specifying that only the excerpt of the requested article
should be shown.

The PEP then takes that decision and enforces it, meaning the request is either
allowed to proceed to the protected resource or is blocked. Enforcement is binary:
permit or deny. But if the decision includes additional data - like an instruction
to show only the excerpt - it’s up to downstream components to interpret and
act on that. In Alice’s case, this means shaping the response to include only the
article excerpt.

There is, however, one essential prerequisite: the system must know who the
subject is - that is, it must verify the subject’s identity, confirming that Alice is
indeed Alice. This verification process is the domain of authentication. Without
it, the PEP has no basis on which to enforce access decisions. Authentication
is therefore foundational, which is why we begin by examining authentication
patterns and approaches. But before doing that, there is a need to explore a few
essential concepts that provide context for understanding the broader landscape
of authentication and authorization.

1.3 Policy Representations and Lifecycle

As described above, authorization policies define who can do what under which
conditions. Depending on how they’re represented and integrated into a system,
their impact on development, operations, and security can vary widely. In practice,
policies are implemented in two main ways:

Hardcoded policies: These are embedded directly in application code - for
example, conditional checks like if user.role == 'admin'. In this model,
the PDP is implicit within the application logic, and the PEP might be an
interceptor, handler, or a simple conditional branch.

Declarative policies: These are defined outside the application code in struc-
tured formats, evaluated by a dedicated PDP. Examples include policies writ-
ten in Rego”, Cedar ', XACML", or other authorization languages. This model
clearly separates the enforcement logic (PEP) from decision logic (PDP) and
externalizes policy definition.

Declarative policies allow the policy lifecycle to be managed independently of the
application lifecycle. This separation has several operational and organizational
benefits:

https://www.openpolicyagent.org/docs/policy-language
https://www.cedarpolicy.com/en
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

https://www.openpolicyagent.org/docs/policy-language
https://www.cedarpolicy.com/en
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Access policies reflect business rules, regulatory obligations, or security re-
quirements - and while these are also drivers for application features, their
rate of change, ownership, and scope typically differ:

Regulatory updates may require immediate changes to access conditions
without modifying the underlying feature set.

Security incident response might require temporary or permanent changes
to access controls outside a normal release cycle.

Declarative policies empower non-developers to request or implement ac-
cess changes (e.g., enabling partner access during a pilot program) without
waiting for a full development cycle or redeployment, especially when the
changes don’t require altering core application logic.

Policies may vary in scope or depth, with some governing access across
multiple services or applications - for instance, feature-flag-related policies
- while others are more narrowly focused. These aspects are depicted by the
diagram below.

Organization Wide

Business Domain Wide

Business Feature Wide

Service Specific
Policy 1 Policy 1 Policy 1 Policy 1
[Rule 1] [Rule 1] [Rule 1] [Rule 1]
[Rule 2] [Rule 2] [Rule 2] [Rule 2]
[Rule N] [Rule N] [Rule N] [Rule N]
’ Policy N ‘ ’ Policy N ‘ ’ Policy N ‘ ’ Policy N ‘

Figure 1.2: Scope & Depth of Policies

When access policies are tightly coupled to code, any change - no matter
how urgent or isolated - requires application code change, test cycle, and
deployment. Separating policy from application code allows organizations to

react faster and more safely to changes, without compromising the integrity of
the software development process.

Policies are high-stakes - access control bugs are different from feature bugs.
They tend to be catastrophic, not just annoying:

Granting access when you shouldn’t can lead to data breaches
Revoking access incorrectly can break business processes

Externalized policies are easier to review, audit, and test - just like any other
configuration artifact. They can also be subject to staged rollouts and auto-
mated validation. Enabling and governing these capabilities is the responsibil-
ity of the Policy Administration Point (PAP), which orchestrates the author-
ing, validation, and controlled distribution of policies. Policies themselves are
also subject to access controls. In that sense, the PAP also incorporates aspects
of the PEP and the PDP - but is focused entirely on the policy lifecycle rather
than on business-related decisions.

Declarative policies also enable before-the-fact audit — the ability to answer
“Who currently has access to this object/resource?” without needing to wait
for a request to happen or instrument code. This reverse-query capability is
essential for governance, compliance, and risk assessments, and is practically
impossible when policies are hardcoded and scattered across multiple applica-

tions.

1.4 First-Party vs. Third-Party

Akey distinction in access control scenarios lies in on whose behalf the subject is
acting. This determines whether we’re dealing with a first-party or a third-party
context.

In a first-party scenario, the subject acts on their own behalf - for instance,
when Alice reads or edits articles in her account. In a third-party scenario, the
subject is acting on behalf of someone else - like when Alice delegates access to an

external service that analyzes her articles, e.g., to check the grammar. The third-
party service becomes the subject, while Alice remains the principal authorizing

access.

This distinction has important implications for how delegation is modeled, how
trust is established, and what guarantees are needed from the involved systems.

1st Party Context

Alice... %» Article«object»

I 3rd Party Context

Alice... ‘

I
I
I
]
I
I J\y ights
I
|
I
|
I

read

I
I
I
I
I
I
I
I
|
! Some Service... - Article«object»
|

I

Figure 1.3: First Party vs Third Party

Between these scenarios, there is also a special case within the first-party context,
where a user explicitly authorizes a trusted internal service to act on their behalf.
In this situation, the user acts both as the subject (requesting the action) and
as the PDP by giving explicit consent. For example, in a banking app, the user ap-
proves a transaction, while the banking system acts as the PEP. These interactions
rely on existing authentication and authorization mechanisms and are enhanced
by dedicated protocols to ensure integrity and non-repudiation. Additionally,
other PDPs within the system may apply further controls, such as fraud detection,

compliance verification, or transaction limits, before final enforcement.

While exploring these contexts, it’s important to understand that different pro-
tocols address different needs. Some protocols are tailored to the first-party
context only, such as Security Assertion Markup Language (SAML) or Cen-
tral Authentication Service (CAS)”, which are primarily designed for direct user
authentication and carry attributes for authorization purposes within trusted
domains. Others, like Open Authorization (OAuth 2.0), focus exclusively on the

https://www.oasis-open.org/standard/saml/
https://apereo.github.io/cas/7.2.x/index.html
https://datatracker.ietf.org/doc/html/rfc6749

https://www.oasis-open.org/standard/saml/
https://apereo.github.io/cas/7.2.x/index.html
https://datatracker.ietf.org/doc/html/rfc6749

third-party context, enabling delegated access to resources on behalf of another
party. And then there are protocols like OpenID Connect (OIDC)" that support
both contexts, combining identity information with delegated access.

What all these protocols have in common is that they define mechanisms to
authenticate the involved parties. However, the details of how this authentication
is performed - e.g., through passwords, or by making use of other factors - are
not covered in this primer. Likewise, the protocols themselves are not the focus
here.

1.5 On Subjects, Principals and Identities

Another important topic to understand before we explore authentication and
authorization patterns is the distinction between subjects, principals, and iden-
tities. These terms appear in various standards — such as NIST SP 800-63 ", NIST
SP 800-162 , and ITU-T X.800 ' - but they are often used inconsistently or even
interchangeably. From my experience, this inconsistency tends to cause more
confusion than clarity. The definitions used in this primer therefore reflect how
these concepts typically manifest in systems we design and operate today.

According to the reference architecture and the story above, a subject is an active
entity that carries an identity and is the target of authentication.

However, in most real-world systems, authentication is not limited to a single type
of active entity. Instead, there are often multiple forms of identity involved, each
representing a different kind of actor or context:

End-users: Human users interacting with a system via e.g., a browser, or a
mobile app.

Devices: The user’s device (e.g., smartphone, laptop, or [oT hardware), which
may have its own identity.

https://openid.net/specs/openid-connect-core-1_o.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://www.ituw.int/rec/T-REC-X.800

https://openid.net/specs/openid-connect-core-1_0.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://www.itu.int/rec/T-REC-X.800

External clients: Applications or scripts accessing an API on behalf of a user
or system.

Internal workloads: Services or components within a distributed system com-
municating with each other.

All of these are principals - identifiable entities that can be authenticated and
authorized. A subject, in turn, may consist of one or more such principals. For
example, a request from a mobile app may involve both the authenticated user
and the device they’re using. In a service-to-service call, the subject might be the
internal service identity, optionally carrying along delegated user context.

Importantly, the definition of a subject is often shaped by the perspective of
the PDP that evaluates the request. Each PDP - or even each policy - may view
the subject differently, based on what attributes or entities are relevant for its
decision-making. One policy may only care about the identity of the user. Another
may treat the combination of user and device as the subject. A third may include
the client application or network context as additional principals. In this sense, a
subject is not a fixed notion, but a context-dependent composition of principals
as seen by the evaluating component.

Understanding subjects in this compositional and context-sensitive way is key to
interpreting the patterns described in this primer. While many patterns focus on
a single principal type (e.g., user or service), they often support multi-principal
subjects through identity propagation and proper orchestration of authentica-
tion mechanisms.

The last remaining concept to cover is identity. An identity is a collection of
attributes that uniquely identify an entity, similar to a primary key in a database.
In some cases, this might be a single attribute such as an ID, while in others it can
be a combination of several attributes. Unlike subjects and principals, which refer
to active entities or actors, the concept of identity also applies to passive entities
- the objects - as well.

2 Avuthentication Patterns

Effective authorization depends fundamentally on accurately identifying who is
making a request. Before a Policy Decision Point (PDP) can calculate a meaningful
access control decision, and a Policy Enforcement Point (PEP) can enforce it, the
identity - or identities - of the subject associated with that request must first be
established. And that’s exactly the focus of this chapter: exploring architectural
patterns commonly used in distributed systems to establish identity.

These patterns also lay the foundation for a later discussion on identity propaga-
tion - a crucial topic, since trustworthy identity propagation is key to maintaining
strong trust boundaries across a system.

2.1 Introduction to Authentication
Patterns

Authentication can be handled at different layers of a system’s architecture.
Broadly speaking, there are three main approaches:

Service-Level: responsibility for verifying identity is delegated to each service,
or to a proxy tightly coupled to it.

Edge-Level: authentication is centralized in a shared component at the system
boundary.

Kernel-Level: authentication is performed in the operating system kernel,
using cryptographic identities enforced at the transport layer.

Each approach comes with trade-offs in terms of scalability, consistency, and

operational complexity.

Authentication applies to different types of actors. These can be external actors,
such as end users or client applications outside the system, or internal actors,
such as services, other workloads, and even the nodes those workloads run on, all
operating within the system boundary. The same architectural patterns can often
be applied to both kinds of actors, though the technical mechanisms and trust
assumptions differ.

Before diving into these patterns, it is also important to clarify what is being
verified. Most systems handle authentication in two phases:

Primary Authentication: This is the process of directly verifying credentials
tied to authentication factors, such as passwords, biometric inputs, or signed
challenges like WebAuthn assertions. For internal actors, this might involve val-
idating machine-issued certificates, SPIFFE IDs, or workload authentication
data issued by the platform. This step establishes identity by proving control
over a credential and linking it to a known identity, such as a user account or
a system identity.

Authentication Proof Verification: After successful primary authentication,
the system typically issues an authentication proof - a reusable artifact that
confirms the authenticated identity in subsequent interactions. At the applica-
tion layer, this might take the form of a session cookie, token, or assertion. At
lower layers, it can take the form of cryptographic session state, such as a TLS
session key, IPsec Security Association, or similar. Verifying the proof ensures
that the identity remains trusted without repeating primary authentication.

Where this distinction is not relevant, the term authentication data is used
to refer collectively to both primary credentials and authentication proofs. The
following subchapters use this term when referring to either or both phases.

The patterns described below differ in what is verified (credentials in primary
authentication vs. authentication proofs), where verification happens, and which
implications this has for system design and trust boundaries.

2.2 Service-Level Embedded
Authentication

In this pattern, each service is responsible for handling primary authentication in-
ternally. This includes managing identities and credentials, performing credential
verification, and implementing authentication workflows. Common credential
types used in this setup include username/password, API keys, and similar simple
methods. All authentication logic and subject-related data storage are embedded
directly within the service, often through custom code or built-in libraries.

| Microservice

I o e e o e
\ | ‘rVour Code |
| |) I
Soneicleg <> il \‘ > Authentication Mediation D — S iy :
«Subject» “ > «Object» I
l b & ; , :
I I
! i |
I
/ o ____ !
/ |
7 |
- I —
- I
| Identity Store
I
e,
<> credentials

<> authentication proof

Figure 2.1: Service-Level Embedded Authentication

Pros

Simplicity: Each service is fully self-contained and does not rely on external
systems or additional infrastructure for authentication.

Customization freedom: Authentication behavior can be adapted to service-
specific requirements without external constraints.

Support for external and internal actors: Since the implementation of a
service can fully control all authentication-related functionality, orchestration
of different authentication contexts - like authentication of internal services
and external users - is possible, but comes with significant complexity (see also
the authentication orchestration con below).

Cons

Inconsistency: Authentication behavior, credential storage, and authentica-
tion flows differ across services, leading to fragmentation and a poor user
experience, incl. not being able to support SSO.

Security risk: Authentication code is duplicated across services, increasing the
risk of vulnerabilities and complicating audits.

Maintenance burden: Changing authentication methods (e.g., introducing
MFA) requires updates across all affected services.

Limited scalability: Each service is responsible for identity management, com-
plicating secure identity management across a large system. This makes the
pattern unsuitable for scalable service-to-service authentication.

Limited observability and governance: Suspicious activity often goes unde-
tected without centralized monitoring. Credential reuse, account compromise,
or brute-force attacks on one service remain invisible to others, hindering
coordinated detection and response.

Authentication orchestration: Handling of multi-principal subjects - that is
supporting multiple authentication configurations, including protocol chain-
ing and subject-specific variations, required to support different contexts, like
first- and third-party, or external client and service-to-service authentication -
adds significant complexity.

Coupling of external authentication data with internal trust assumptions:
Using the same authentication data for both external clients and internal
services increases the risk of leakage and unauthorized access. If an internal
service is inadvertently exposed because of a misconfiguration or an attacker
gaining internal access, the leaked authentication data may enable unautho-

rized access to sensitive resources.

2.3 Service-Level Code-Mediated
Authentication

This pattern addresses key limitations of the Service-Level Embedded Authen-
tication, such as fragmented identity management, duplicated credential stores,
and lack of support for SSO. In this pattern, the service no longer verifies cre-
dentials directly. Instead, an external Identity Provider (IdP) authenticates the
subject and issues authentication proofs. The service verifies these internally and
extracts identity attributes for request processing.

Pros

SSO support: Identity and credential lifecycle is consolidated in the IdP, en-
abling Single Sign-On and reducing duplication.

Lower security risks: Centralized authentication reduces the attack surface
related to credential handling.

I I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
! I : Your Code 1! : |
1 | I , N (L
Soe @i <> al Authentication Mediation D E— S iy ¥ : !
«Subject» |] “ 7] «Object» 1! l
| \))
| 1l 1l :
X O i
<> / 1! 7 e
\L Ve - - LY L L - a ! |
/ I N
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
5 Lo
e P
—_
Cdentity Provider ‘
I
I S I
| () |
— I
I
< <> ‘ Identity Store :
I . I
I I
L e e e e e e e e e e e e e e e e o — — — — o — — — — — 4
<> credentials

<> authentication proof

Figure 2.2: Service-Level Code-Mediated Authentication

Improved user experience: Consistent authentication flows and session han-
dling across services.

Interoperability: Widely adopted protocols like OIDC' and SAML" provide
flexibility and broad integration possibilities with various IdPs.
Customization freedom: Services can still tailor authentication behavior to
specific needs, for example, in environments where standards like OIDC are
not applicable.

Support for external and internal actors: Since the implementation of a
service can fully control all authentication-related functionality, orchestration
of different authentication contexts - like authentication of internal services
and external users - is possible, but comes with significant complexity (see also
the authentication orchestration con below).

https://openid.net/specs/openid-connect-core-1_o.html
https://www.oasis-open.org/standard/saml/

https://openid.net/specs/openid-connect-core-1_0.html
https://www.oasis-open.org/standard/saml/

Cons

Protocol handling overhead: Each service must implement and maintain
logic for authentication proof verification and protocol-specific behavior.
Misconfiguration risks: Incorrect verification logic, such as missing expi-
ration checks or improper cryptography use, can introduce severe security
vulnerabilities.

Authentication orchestration: Handling of multi-principal subjects - that is
supporting multiple authentication configurations, including protocol chain-
ing and subject-specific variations, required to support different contexts, like
first- and third-party, or external client and service-to-service authentication,
adds significant complexity.

Coupling of external authentication data with internal trust assumptions:
Using the same authentication data for both external clients and internal
services increases the risk of leakage and unauthorized access. If an internal
service is inadvertently exposed because of a misconfiguration or an attacker
gaining internal access, the leaked authentication data may enable unautho-

rized access to sensitive resources.

2.4 Service-Level Proxy-Mediated
Authentication

This pattern builds on the previous pattern but further reduces complexity within
services by offloading authentication-related logic to a dedicated proxy deployed
as a sidecar alongside the service. The proxy operates in front of the application,
forwards requests locally to it, performs verification of authentication proofs with
the Identity Provider (IdP), and injects identity context, typically via headers, into
requests before forwarding them to the service.

Pros

SSO support: Identity and credential lifecycle is consolidated in the IdP, en-
abling Single Sign-On and reducing duplication.

Lower security risks: Centralized authentication reduces the attack surface
related to credential handling.

I I
T I
| I | Side-Car Proxy : | Your Code ! L
I I
| > [| -/ bt
Some Client <> !) - - I Some Entity o
3 < > q
«Subject» ‘ I T ‘ Authentication Mediation ‘ ‘ «Object> N : ‘
Y : | | I I : il
/ I | I byt
<> : 1 <> | | | : | |
v / | o ______ i ,,,,,, | L ___M
/ [I :
b o e e e L _________ I
5 Y
e s B
| Id;ntii\yiprgv;ie? 7777777777777777777777777 !
I
! I
! I
! — I
I
< <> | Identity Store :
! I
! I
| o e e e e e e e e e e e e e e = 4
<> credentials

<> authentication proof

identity context

Figure 2.3: Service-Level Proxy-Mediated Authentication

Improved user experience: Consistent authentication flows and session han-
dling across services.

Interoperability: Widely adopted protocols like OIDC™ and SAML" provide
flexibility and broad integration possibilities with various IdPs.

Separation of concerns: Removes authentication-related logic from applica-
tion code by offloading it to the proxy, simplifying service development and
reducing maintenance effort.

Consistent behavior: Identity verification and protocol handling in the proxy
ensure uniform behavior across services.

Improved security posture: Reduces the risk of implementation flaws by con-
solidating authentication-related logic into a dedicated, hardened component.
Authentication orchestration: Some proxies support multiple authentica-
tion configurations, including protocol chaining and subject-specific variations.

https://openid.net/specs/openid-connect-core-1_o.html
https://www.oasis-open.org/standard/saml/

https://openid.net/specs/openid-connect-core-1_0.html
https://www.oasis-open.org/standard/saml/

This enables support for different contexts, such as first- and third-party ac-
cess, or a mix of external clients and internal services.

Strong foundation for service-to-service trust: Enables Zero Trust

networking with workload identity, typically realized via systems like
SPIFFE/SPIRE", which define workload identities embedded in X.509
certificates’ used for mTLS" authentication between services.

Cons

Operational complexity: Requires deployment and maintenance of
additional components per microservice, leading to higher resource usage and
costs.

Header spoofing risk: Misconfiguration or insufficient validation in the proxy
can allow malicious clients or internal actors to spoof or manipulate identity
headers. Ensuring correct proxy setup and strict header validation is essential
to maintain the integrity of identity information.

Configuration consistency: All proxies across the service landscape must be
configured uniformly to ensure consistent authentication behavior and user
experience. Inconsistencies in configuration can lead to confusing user flows
or even security vulnerabilities.

Coupling of external authentication data with internal trust assumptions:
Using the same authentication data for both external clients and internal
services increases the risk of leakage and unauthorized access. If an internal
service is inadvertently exposed because of a misconfiguration or an attacker
gaining internal access, the leaked authentication data may enable unautho-
rized access to sensitive resources.

https://csrc.nist.gov/pubs/sp/800/207/final
https://spiffe.io/
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc8446

https://csrc.nist.gov/pubs/sp/800/207/final
https://spiffe.io/
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc8446

2.5 Edge-Level Authentication

In this pattern, authentication is handled at the system boundary by a shared com-
ponent such as an API gateway or ingress proxy. This component authenticates
incoming requests from external clients before they reach internal services. It
integrates with one or multiple Identity Providers (IdPs) using protocols such
as OIDC’, OAuth 2.0 ', SAML , mTLS *, or other mechanisms, and propagates
verified identity information, typically via headers, to downstream services for

further processing.
\ e oo - - -
| Microservice =
\ - - —————— - ——— - I b e == ‘ ‘F\
| Edge Proxy | | | Your Code ! |
| I I I (T
Some Client <>_>‘ Authentication \ ‘ > I Some Entity |l : |
«Subject» | | uihentication ' N ; I | 7| «Object» ot |
3 | o | I ! il : I
| | I I [
<> | <> | | | ([: |
v / I v | I I o
************** | e B
/ | I : |
s . T I
e 1 it
Tld;nﬁtyipl%viide: 7777777777777777777777777 !
I
I I
I () I
I — I
< <> : Identity Store :
I — I
I I
L o o o Ll a
<> credentials

<> authentication proof

identity context

Figure 2.4: Edge-Level Authentication

https://openid.net/specs/openid-connect-core-1_o.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.oasis-open.org/standard/saml/
https://www.rfc-editor.org/rfc/rfc8446

https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.oasis-open.org/standard/saml/
https://www.rfc-editor.org/rfc/rfc8446

This approach consolidates authentication logic into a single enforcement point,
simplifies service implementation by removing per-service authentication han-
dling, and is particularly common in Zero Trust = architectures.

Pros

Improved consistency: Authentication is performed uniformly and consis-
tently across services at a single entry point, reducing fragmentation, config-
uration drift, and improving auditability.

Simplified service logic: Internal services are relieved from implementing au-
thentication logic, focusing only on authorization and business functionality.
Faster service onboarding: New services can rely on existing infrastructure
for authentication, requiring minimal additional setup.

Protocol-agnostic identity propagation: Verified identity information can
be propagated to internal services using trusted, implementation-independent
formats (e.g., viaa newlyissued JWT ", injected headers carrying identity infor-
mation in protected form using standards like HT TP Message Signatures), or
signed proprietary structures. This avoids passing raw external authentication
data, as is necessary with all previous patterns.

Cons

Limited granularity: Fine-grained or per-endpoint authentication policies
(e.g., step-up authentication) are generally harder to implement and may re-
quire additional coordination with downstream services. This depends heavily
on the capabilities of the edge proxy

Identity propagation challenges: Ensuring secure and reliable propagation of
identity context (e.g., via headers) requires strict validation and trust models
between the edge and internal services. Proper governance can help overcome
this limitation.

Single point of failure: While the ingress proxy or gateway is already a cen-
tral component in most architectures, performing authentication at the edge

https://csrc.nist.gov/pubs/sp/80o/207/final
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfcg421.html

https://csrc.nist.gov/pubs/sp/800/207/final
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc9421.html

makes it a critical part of the security infrastructure. Misconfiguration or com-
promise can impact not just access, but the integrity of authentication deci-
sions system-wide.

Not suitable for service-to-service authentication: Edge-level authentica-
tion only applies to incoming external requests. Internal service-to-service
calls require additional authentication mechanisms. Although technically pos-
sible, routing internal communication through the edge may introduce severe
performance bottlenecks.

2.6 Kernel-Level Authentication

This pattern involves performing authentication at the operating system ker-
nel level using cryptographic identities attached to either a service or the ma-
chine/node it runs on. The actual implementation is based on protocols, such as
IPSec ', or WireGuard . The identity of a peer is cryptographically verified on
each exchanged packet and is limited to layer 3 . This form of enforcement is
transparent to applications, making it a strong foundation for secure communica-

tion between workloads.
\ | Node 1‘
| | Microservice = |
\ D e ‘ | - _. T
: | OS Kernel ‘ | | Your Code Il : o
I I I I I
Some Client ‘ ‘ | <>_>\ " ‘(| | Some Entity 11 ! : |
«Subject» ‘ | | ' :] I «Object> o
! I I I o
| | | : | | ! (.
! | | | | ! (.
/ : | | | ! I : [
*************** | i |
/ | | ! : |
7 e ! |
— : ************* I

<> authentication data

identity context

Figure 2.5: Kernel-Level Authentication

https://www.rfc-editor.org/rfc/rfc6071
https://www.wireguard.com/
https://en.wikipedia.org/wiki/Network_layer

https://www.rfc-editor.org/rfc/rfc6071
https://www.wireguard.com/
https://en.wikipedia.org/wiki/Network_layer

Pros

Transparent to applications: Services do not need to implement authentica-
tion logic; identity is enforced by the OS Kernel.

Protocol-agnostic: Applies to all traffic types, not just HTTP.

Low latency: Enables fast connection setup with strong isolation guarantees.
Provides strong workload identity: Provides identity verification tied di-
rectly to the transport channel, reducing risk of spoofing or replay, which
makes it a strong foundation for service-to-service trust and enables Zero

Trust ~ networking models.
Cons

Not suitable for layer 7 - application-level - authentication: Identities are
tied to workloads or nodes only and not to individual users or external clients.
Because of this, this pattern cannot convey user-specific identity attributes.
Limited observability: Monitoring is confined to connection-level data (e.g.,
source/target workloads), lacking insight into user-driven actions within the
application.

Infrastructure complexity: Requires robust automation for identity manage-
ment, and OS- or kernel-level authentication policy enforcement mechanisms
(e.g., via eBPF).

2.7 Operational and Security
Considerations

While the above authentication patterns differ primarily in terms of where and
how authentication is performed, they also have significant implications for op-
erations and authorization. Choosing the right pattern often comes down to
balancing development flexibility, operational effort, and risk tolerance.

https://csrc.nist.gov/pubs/sp/80o/207/final
https://ebpf.io/

https://csrc.nist.gov/pubs/sp/800/207/final
https://ebpf.io/

2.7.1 Operational Considerations

Configuration &
Implementation Operational Observability
Pattern Burden Overhead Scope
Service-Level High High Application-
Embedded specific
Service-Level Medium Medium IdP +
Code-Mediated Application-
specific
Service-Level Medium High (infra Proxy +
Proxy-Mediated cost) Application
Edge-Level Low Low Centralized
(Proxy)
Kernel-Level Low-Medium High (infra Network-level

complexity) only

Patterns with decentralized authentication (like Service-Level Embedded Au-
thentication) typically incur more operational overhead due to inconsistencies,
duplicated configuration, and monitoring complexity. Centralized patterns re-
duce duplication but introduce infrastructure dependencies and require resilient
design.

2.7.2 Security Considerations

Security risks increase significantly when authentication logic and credentials are
handled directly within application code. Centralized enforcement approaches —
whether at the IdP, edge, or within the OS kernel - help limit exposure, enforce
stronger boundaries, and reduce the risk of misconfiguration (especially at the
edge). However, care must be taken to prevent trust leakage, which directly im-
pacts the ability to enforce the principle of least privilege. Achieving this depends
not only on where authentication occurs, but also on how identity information

is propagated and verified downstream. Without trustworthy, tamper-resistant
propagation, even strong initial authentication can be undermined - weakening
trust boundaries and ultimately impairing the system’s ability to make reliable
authorization decisions. To address this, the next chapter examines common
identity propagation strategies and their impact on system security, observability,

and trust enforcement.

Additional important aspects

Operational and security concerns such as token theft, replay protec-
tion, session lifecycle, and reauthentication are critical when implementing
authentication mechanisms. These topics are extensively covered in e.g.,
OWASP Authentication Cheat Sheet , and Session Management Cheat
Sheet .

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.ht
ml

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

3 Identity Propagation Patterns

As mentioned in the previous chapter, trustworthy identity propagation is essen-
tial for maintaining strong trust boundaries across a system.

Architectures following Zero Trust principles exemplify this need, as they em-
phasize strict access control and continuous verification. This chapter introduces
commonly used identity propagation patterns - that is, the ways in which identity
context flows between services. These patterns influence where and how access
control decisions are made, the reliability and trustworthiness of those decisions,
and ultimately how effectively least privilege can be enforced. They also differ in
how tightly internal services are coupled to the external authentication mecha-
nisms and identity representations used at the boundary.

Some identity propagation patterns aim to decouple internal service logic from
specific external authentication protocols and data formats. This approach, often
called protocol-agnostic or token-agnostic identity propagation, means internal ser-
vices consume a normalized, unified identity representation that abstracts away
the details of the original authentication protocol and authentication data (includ-
ing both primary credentials and authentication proofs). This abstraction enables
internal services to remain stable, simplified, and focused on authorization logic,
even as external authentication methods evolve or change.

At one end of the spectrum, some patterns directly forward externally issued
authentication data (such as OAuth 2.0 tokens, session cookies, or certificates)
downstream, requiring internal services to understand and process the origi-
nal authentication protocols. This approach can increase complexity and trust
assumptions within internal services. At the other end, a trusted system com-
ponent at the edge transforms incoming authentication data into cryptographi-
cally signed, normalized identity structures. These structures abstract away the
original protocol and data format, allowing internal services to remain agnostic
to how authentication was performed. By providing tamper-resistant, verifiable
representations of identity, they establish strong trust boundaries across service
interactions and enable auditable access decisions, making them especially effec-
tive for enforcing least privilege in distributed environments.

https://csrc.nist.gov/pubs/sp/8oo/207/final

https://csrc.nist.gov/pubs/sp/800/207/final

Between these extremes exist intermediate patterns where internal services rely
on simplified identity representations issued or transformed by upstream ser-
vices but without cryptographic protections, requiring implicit trust between

services.

Each pattern involves trade-offs between implementation complexity, security,
trust, privacy, and operational overhead. Choosing the appropriate identity prop-
agation approach depends on the system’s security posture, scalability require-
ments, and the desired level of trust between internal components.

Understanding these trade-offs in concrete terms requires examining how iden-
tity propagation is commonly implemented in practice. The following chapters
describe representative patterns along this spectrum, highlighting their charac-
teristics, benefits, and limitations.

3.1 External Identity Propagation

In this pattern, the edge component forwards the externally received authentica-
tion data (e.g., an access token, ID token, session cookie, or certificate) directly
to internal services without transformation. The internal services are responsible
for the verification of the received authentication data, for extracting the identity
context (such as user ID, or other attributes), and making access control decisions
based on it. When an internal service needs to communicate with another service,
it just forwards the authentication data further downstream. The aforesaid verifi-
cation may require contacting a Verifier, which depending on the authentication
protocol and data used, could be an authorization server that issued the token or,
for example, an OCSP responder to check the revocation status of a certificate.

As already said above, the actual verification of the authentication data, repre-
sented by the dotted lines in steps 3 and 5 of the diagram above, depends on the
type of authentication data used. For example, in the case of an opaque token, each
service must call the appropriate identity provider, respectively, authorization
server endpoint to retrieve the associated data. If the token is self-descriptive,

\ | | Microservice A | | Microservice B |
! I

\ @ @ | | | |
! I
Sore Client <> - Edge-Prox ﬁ»‘ \<>4_),‘ Some Entity |
«Subject» 9 Yy q ‘] ~Objct |
1 : ‘ ‘ !
I | | ‘
I | | ‘
L

/ O P

Rl A
/ Q : ,.
uthentication data v authentication data
/ verification verification
Verifier R :

<> authentication data

Figure 3.1: External Identity Propagation

such as a JWT", the service needs the corresponding key material to verify its
signature, and so on.

Pros

Minimal edge logic required: The edge mainly forwards the authentication
data, reducing its complexity. It may also just verify the validity of the authen-
tication data.

No additional infrastructure needed: Internal services use the same authen-
tication data as the edge, avoiding the need for internal signing or identity
transformation.

Cons

Tight coupling to external protocols: Each microservice must understand
and correctly handle potentially multiple types of external authentication data
and formats (e.g., OAuth 2.0°, OIDC", cookies). As a result, services must

https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_o.html

https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html

support protocol-specific logic (e.g., JWT" parsing, OAuth 2.0 token valida-
tion, cookie decoding) and are exposed to external semantics, expiration rules,
and revocation mechanisms, increasing implementation complexity and brit-
tleness. Changes to external identity providers or protocols typically break
internal service behavior.

Increased security risk: If external authentication data is leaked, any internal
service exposed, intentionally or not, can potentially be accessed directly using
the leaked token.

Unsuitable for Zero Trust™ or multi-tenant environments: Trust assump-
tions and lack of verifiability conflict with the security guarantees required in
these environments.

Privacy concern: Because externally visible authentication data is reused in-
ternally, identifiers intended for internal use (e.g., subject IDs in JWTs) may be-
come externally observable. This can violate privacy requirements by enabling
cross-context linkability and may conflict with regulations such as the GDPR
or the CCPA.

3.2 Simple Service-Level Identity
Forwarding

This pattern builds on the previous one but introduces a lightweight form of inter-
nal identity abstraction. While the edge component still forwards the externally
received authentication data (e.g., an access token, ID token, session cookie, or
certificate) to internal services, each microservice no longer forwards this data
unchanged. Instead, a microservice extracts the relevant identity information
(e.g., user ID, roles, scopes) from the incoming request and creates a simplified
representation of the identity, such as a plain JSON object, a self-signed JWT, or
even a single value embedded in a query or path parameter, when making calls to
downstream services. As with the previous pattern, the verification of the initially
received authentication data may require contacting a Verifier, which depending
on the authentication protocol and data used, could be an authorization server

https://www.rfc-editor.org/rfc/rfc7519
https://csrc.nist.gov/pubs/sp/8oo/207/final

https://www.rfc-editor.org/rfc/rfc7519
https://csrc.nist.gov/pubs/sp/800/207/final

that issued the token or, for example, an OCSP responder to check the revocation
status of a certificate.

)]
I
@ | ‘ ‘
| |

- -

Some Client O o ! ! Some Entity | |
SOy 7 ‘ o ‘
| ! ! I

|
|

|
|

/ @nhemicaﬁon data | v

verification ‘

Verifier

< authentication data

identity data

Figure 3.2: Simple Service-Level Identity Forwarding

This internal identity representation is not strongly cryptographically protected
and often relies on implicit trust between services. As a result, downstream
services must trust the integrity and correctness of the identity information
forwarded by their upstream callers.

As with the previous pattern and as also said above, the actual verification of the
received authentication data, represented by the dotted line in steps 3 of the dia-
gram above, depends on the type of authentication data used. For example, in the
case of an opaque token, the service must call the appropriate identity provider,
respectively, authorization server endpoint to retrieve the associated data. If the
token is self-descriptive, such as a JWT, the service needs the corresponding key
material to verify its signature, and so on.

Pros

Simple and lightweight: Requires minimal implementation effort and no
complex cryptography or signing infrastructure.

Protocol abstraction: Internal services operate on simplified identity rep-
resentations, avoiding the need to parse or validate external authentication
protocols.

Flexible identity forwarding: Enables propagation of identity context with-
out dependency on a central trusted issuer for every internal call.

Cons

High trust requirement: Downstream services must trust upstream callers to
provide unaltered and accurate identity information and related data.
Vulnerable to spoofing: Lack of cryptographic protection makes identity data
susceptible to tampering.

Unsuitable for Zero Trust’ or multi-tenant environments: Trust assump-
tions and lack of verifiability conflict with the security guarantees required in
these environments.

Protocol complexity leakage: If any internal service becomes externally ex-
posed, support for full external authentication mechanisms is required to avoid
API abuse.

Privacy concern: Because externally visible authentication data is reused in-
ternally, identifiers intended for internal use (e.g., subject IDs in JWTs) may be-
come externally observable. This can violate privacy requirements by enabling
cross-context linkability and may conflict with regulations such as the GDPR
or the CCPA.

https://csrc.nist.gov/pubs/sp/800/207/final

https://csrc.nist.gov/pubs/sp/800/207/final

What this pattern is really about

This pattern has a tendency to invite risks commonly associated with
Insecure Direct Object References (IDOR)" resulting in data exposure. | hope

I'm not stepping on anyone's toes — but | just have to say it.

It's easy to fall into the trap of passing user IDs through URLs, head-
ers, or JSON payloads without verification - trusting upstream services
entirely, with no signatures, no integrity checks, and no questions asked
by downstream systems. While this might seem like a convenient internal

optimization, it creates a fragile foundation.

Often the response is:

Well... things do happen. Remote code execution, lateral movement, priv-
ilege escalation, and data leaks are all real possibilities once an attacker
gains a foothold. Internal is not a security boundary - and never was. If that
assumption breaks down - and it often does - these design choices can

amplify the damage.

That said, if you choose it, go in with open eyes — and be honest about the

trade-offs. You now know them.

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_
Prevention_Cheat_Sheet.html#introduction

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html#introduction
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html#introduction

3.3 Token Exchange-Based Identity
Propagation

This pattern builds upon the previous pattern by introducing a trusted interme-
diary, an authorization server, through use of the OAuth 2.0 Token Exchange",
or the new OAuth 2.0 Transaction Tokens (draft) " protocol. A microservice that
receives a request containing externally issued identity (e.g., an access token)
exchanges it for a new, signed access token issued by the authorization server.
This exchanged token is specifically scoped for a downstream internal service and
is then propagated as part of the internal call. As with the previous patterns, the
verification happens optionally with the help of a Verifier. The issuance of a new
token is, however, the responsibility of the Secure Token Service (STS). The latter
assumes the role of the Verifier for the verification of tokens it has issued. Both
might be implemented by the same authorization server, but don’t need to.

\
\
Microservice A Microservice B
\® @ ®
> > >
Some Client \ <> > Edge-Prox: Q N > Some Entity
«Subject» 9 Yy «Object»
| issuance of the new
token
I ®
| A A
O &
/ v vt v
/ external token \ 4 \4
verification @
token verification
Verifier STS <
<> external token

new token

Figure 3.3: Token Exchange-Based Identity Issuance

Downstream services trust the token issued by the STS rather than the one used
by the external client (“Some Client” in the diagram above). The pattern improves

https://www.rfc-editor.org/rfc/rfc8693
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-transaction-tokens

https://www.rfc-editor.org/rfc/rfc8693
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-transaction-tokens

the trust model and strengthens identity guarantees, but is tightly coupled to the
OAuth 2.0 protocol family and its associated token types.

The actual verification of all involved tokens, represented by the dotted lines in
steps 3 and 6 of the diagram above, depends on the type of the token used. For
example, in the case of an opaque token, each service must call the appropriate
identity provider endpoint to retrieve the associated data. If the token is self-
descriptive, such as a JWT, the service needs the corresponding key material to
verify its signature.

Pros

Improved trust model: Downstream services do not need to trust upstream
service implementations, only the STS.

Cryptographically verifiable identity: Issued tokens are signed by an STS,
offering strong integrity guarantees.

Scoping and audience control: Exchanged tokens can be restricted in scope
and audience, reducing the risk of token misuse.

Cons

OAuth 2.0-specific: Relies on OAuth 2.0 Token Exchange , respectively, on
OAuth 2.0 Transaction Tokens (draft) -, limiting its applicability to systems
using that protocol family for externally visible authentication data.
Service-side complexity: Application code must integrate with the STS to
handle token exchange logic, and manage caching or retries.

Latency overhead: The token exchange process introduces additional net-
work round-trips per request flow unless aggressively optimized.
Operational dependency on the STS: Introduces runtime dependency on the
STS implementation availability and scalability.

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc8693
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-transaction-tokens

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc8693
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-transaction-tokens

3.4 Protocol-Agnostic Identity
Propagation

A note on terminology

By the way, Netflix refers to this pattern as “Token Agnostic Identity
Propagation” in this blog post ', which is a great name. That said, I've often
found that as soon as the word “token" comes up, people instinctively
think of OAuth 2.0 or OIDC, even though tokens can also refer to cookies,
certificates, or other artifacts. To avoid that confusion, | chose a more

neutral name here. Naming is hard.

Small advertisement: If you're looking for an off-the-shelf option that
supports this pattern (and several others described in this primer), feel free
to check out my project heimdall . It goes well beyond this specific approach

and is designed to be flexible and extensible for various scenarios.

https://netflixtechblog.com/edge-authentication-and-token-agnostic-identity-propa
gation-514e47e0b602
https://github.com/dadrus/heimdall

The external request is authenticated at the system edge by a trusted component,
which then generates a cryptographically signed (and/or encrypted) data struc-
ture representing the external entity’s identities and attributes (e.g., user ID, roles,
permissions) - typically a self-contained, verifiable structure, such as a JWT or a
proprietary signed format. By doing so, the edge component assumes the role of a
Secure Token Service (STS). This signed identity structure, hereafter referred to
as a token, is propagated downstream to internal microservices. Internal services
trust the signature from the edge issuer and use the token to make access control
decisions.

As with the previous pattern, the verification of the original authentication data
may require contacting a Verifier. The implementation of the Verifier depends on
the protocol and data format used - e.g., it could be an authorization server that
issued a token, or it could be an OCSP responder, used to check the revocation
status of a certificate. Unlike in previous patterns, only the edge component is

https://netflixtechblog.com/edge-authentication-and-token-agnostic-identity-propagation-514e47e0b602
https://netflixtechblog.com/edge-authentication-and-token-agnostic-identity-propagation-514e47e0b602
https://github.com/dadrus/heimdall

\

\ rEJg;C;m;o;e;l o ‘\ rMTcrgseirvEeiAi N 7\ rMTcrgs(;rvrc9787 S ﬁ‘
I
| I
‘ ® @ |
) VO > ! > ’ :
Some Client | Edge-Proxy sTS |~) ! 5 Some Entity | |
«Subject» | ‘ y | | | | @ «Object» |
)
| ! ! ! signed subject !
| ! I ! structure verification I
issuance of the ! | ! . |
| @ signed subject | i e\ Wl
structure I :
; < 20N
/ | D .
| Verifier | | @ signed subject % '
/ ‘ [Structure verification |- -~ '
I
Lo
v
A\ 4 authentication data
verification
Verifier <> authentication data

signed subject structure

Figure 3.4: Protocol-Agnostic Identity Propagation

responsible for that verification. The specific verification process depends on the
aforesaid type and format of the authentication data, denoted by the dotted line
in step 2.

Further downstream, the microservices validate the signed token issued by the
trusted edge-component. Each microservice must have access to the correspond-
ing verification key to validate the authenticity of this token. The corresponding
verification steps are denoted by the dotted lines in steps 5 and 7. This is where
the trusted component at the edge assumes the role of a Verifier.

It’s worth noting that the edge-component roles shown in the diagram above —
Edge Proxy, STS, and Verifier — may all be implemented within a single technical
component, or split across multiple cooperating services. For example, a proxy
might delegate the authentication data and token issuance related logic to another
service via a mechanism typically named as forward auth or external auth. That
service could implement the STS and the Verifier logic by itself, or, in turn,
delegate token issuance to an existing authorization server using mechanisms
such as the OAuth 2.0 Token Exchange *, as described in the previous pattern.

https://www.rfc-editor.org/rfc/rfc8693

https://www.rfc-editor.org/rfc/rfc8693

Pros

Cryptographic trust: Signed tokens provide strong guarantees about the in-
tegrity and authenticity of the propagated identity.

Decoupling from external authentication data and context: Internal ser-
vices neither handle external protocols nor need to differentiate whether re-
quests originate from first- or third-party actors, simplifying their logic and
trust assumptions.

Rich identity context: Allows inclusion of fine-grained identity and authoriza-
tion metadata.

Secure across trust boundaries: Suitable for multi-tenant and Zero Trust
environments.

Separation of external and internal identities: Enables mapping externally
known identifiers to distinct internal representations, preventing direct expo-
sure of internal identifiers and thereby enhancing privacy by reducing correla-

tion and tracking risks across domains.
Cons

Key management complexity: Requires secure handling and rotation of sign-
ing keys to maintain trust.

Token size overhead: Signed tokens issued by the edge component may be
large, increasing network overhead.

Revocation challenges: Once issued, tokens may be valid for many services
until expiration, complicating immediate revocation. This can, however, be
mitigated by issuing short-lived tokens and tailoring subject structures to
individual downstream services.

Increased complexity at the edge: The edge component must handle exter-
nal authentication data verification as well as internal token generation and
signing, making it a critical security component.

https://csrc.nist.gov/pubs/sp/80o/207/final

https://csrc.nist.gov/pubs/sp/800/207/final

3.5 On Privacy By-Design

Privacy concerns - particularly around cross-context linkability and the risk of ex-
posing internal identifiers — affect all identity propagation patterns, though their
severity depends on how externally received authentication data is handled.

Implementation of patterns like External Identity Propagation and Simple
Service-Level Identity Forwarding typically directly reuse externally visible
authentication data within the system. This increases the risk that internal iden-
tifiers (e.g., sub claims in JWTs) become externally observable, enabling correla-
tion of user activity across contexts. Such reuse undermines core privacy goals
like pseudonymisation and data minimisation and conflicts with principles of
integrity and confidentiality - all central to privacy-by-design thinking.

In contrast, patterns like Token Exchange-Based Identity Propagation and
Protocol-Agnostic Identity Propagation help enforce privacy boundaries by
transforming or isolating authentication data before it’s used internally. That
doesn’t mean these patterns - or their specific implementations - are immune
to privacy risks. They simply make it easier to adopt techniques such as opaque
tokens, session-referencing cookies, or identifier mapping, which reduce unnec-
essary exposure of user-specific identifiers. Even so, mapped identifiers can still
reveal the existence of a persistent relationship with the system, which may be
problematic in certain contexts. Still, these patterns embody privacy-by-design
principles more effectively — and as a positive side effect, tend to align well with
legal requirements such as the GDPR (Art. 5(1)(b, ¢, f), Art. 25, Art. 32, Recitals 26
and 30), CCPA, and similar frameworks.

4 Avuthorization Patterns

While some basic access control can be applied to anonymous or unauthenticated
subjects, the most meaningful authorization requires a reliable understanding of
the subject’s identities and associated attributes. Having covered these founda-
tional topics in previous chapters, we now turn to how access control decisions
are made and enforced across services in distributed systems.

The corresponding architectural approaches can be described by authorization
patterns. These patterns define where Policy Decision Points (PDPs), Policy En-
forcement Points (PEPs), and Policy Information Points (PIPs) are placed within
a system and how they interact. They also govern how subject and object identi-
ties, along with related attributes, flow between these components - and where

policies are stored and accessed.

Choosing the right patterns is critical, as it directly impacts the system’s security
posture, performance, scalability, and maintainability. The following subchapters
explore the most common ones used in distributed architectures and outline their
trade-offs.

4.1 Decentralized Service-Level
Authorization

In this pattern, most of the functional components from the reference architec-
ture are implemented directly within each microservice. Even the Policy Informa-
tion Points (PIPs) may be embedded into the service logic (e.g., via database or
configuration entries) if the microservice is responsible for all relevant attributes
itself. However, this is rarely the case, and most microservices must integrate
with other services to retrieve required attributes, treating those other services

as external PIPs.

The access control rules are typically implemented using native language con-
structs (e.g., if/else statements), either inline with business logic functions or

via abstraction mechanisms such as interceptors.

Microservice

Your Code

Some Client... PEP «—>» Some Entity...

IDE... - . . Other Services«<PIP>

Figure 4.1: Decentralized Service-Level Access Control

When a microservice receives a request containing authorization data (e.g.,
end-user context or resource identifiers), it evaluates whether access should
be granted. This may involve querying other services (PIPs) for additional
attributes before reaching a decision and enforcing it (implicitly). Alternatively,
some services may use asynchronous communication patterns (e.g., periodic
syncs or event-driven updates) to pre-fetch required data in advance, improving

performance and resilience.
When adopting this approach, the following trade-offs should be considered:

Pros

Familiar development model: Developers can use the same language and
tools they already know.

Framework support: Many libraries and frameworks exist for many languages
to reduce boilerplate and simplify integration.

Rapid prototyping: Policy logic is implemented directly in code, enabling
quick experimentation and iteration.

Team autonomy: Fits well with independent team ownership; each team can
choose its approach.

High performance: Policy evaluation is done in-memory within the microser-
vice.

Full context awareness: The service has access to runtime data, business
logic, and domain models, enabling fine-grained, context-rich and nuanced
decisions.

Failure isolation: If all required attributes are available locally or cached,

failures in external systems do not impact decision-making.
Cons

Scattered logic: Authorization requirements tend to spread across multiple
services, leading to code duplication, increased complexity, and maintenance
overhead. Over time, this results in a slow and error-prone policy lifecycle,
significantly reducing time to market. This is a classic “Hardcoded Rules”
antipattern.

Role explosion: Business stakeholders typically describe authorization
requirements using roles - for example, “a user with role X can do Y”. Without
introducing an abstraction layer between business roles and the actual
implementation, systems often accumulate many similar but inconsistent
roles. Roles also tend to evolve or change names over time. This leads quickly
to role explosion, again slowing the policy lifecycle and increasing the risk of
errors. This is known as the “Code Against the Role” antipattern.

Weak governance: Autonomous teams may interpret and implement policies
differently, making consistent governance for the whole environment nearly
impossible. This may result in enforcement gaps and unpredictable behavior.
No central auditability: When authorization logic is distributed across ser-
vices, it becomes nearly impossible to answer “before-the-fact” questions such
as “Who has access to what, and when?” - a key requirement in compliance and
security contexts.

Inconsistent monitoring: Logging and audit trails vary widely across services
and are often incomplete or incompatible. This hampers the ability to detect
abuse, investigate incidents, or analyze system-wide access patterns.

Coverage gaps: Many frameworks do not expose ways to integrate access
control into certain auto-exposed endpoints. Teams may also forget to secure
these paths entirely. Documentation of the frameworks is also often inconsis-
tent or misleading. All of that leads to unintended public exposure of sensitive
endpoints.

These cons often lead to “accept by default” behavior, ultimately leading to broken
access control vulnerabilities.

4.2 Centralized Service-Level
Authorization

This pattern aims to address the first three drawbacks of the previous pattern
- to reduce complexity, improve time to market, and establish governance over
policy definitions — by decoupling policy logic from service code and supporting
its own lifecycle management. In this model, authorization rules are defined
independently of the microservice code. This separation allows policies to be re-
viewed, versioned, and audited without being tied to the specific implementation
languages of the microservices. These policies can reside in a dedicated policy
repository, which explains the “centralized” in the pattern name, or they can be
colocated with the service code in the same repository. The essential aspect is
that policies are decoupled from the service code, rather than intertwined with
it. The actual enforcement of the access decisions still takes place locally to each

microservice.

The PDP can be implemented as a library (e.g., Casbin) embedded in the service’s
codebase, as alocal sidecar process (e.g., Open Policy Agent "), or even be external,
centrally managed PDP - shared across a domain (in Domain Driven Design
sense), scoped to a business unit, or truly central depending on organizational
needs. Authorization rules are now defined using the PDP’s domain-specific lan-
guage (e.g., Rego in the case of OPA), rather than being hardcoded into the service
logic.

https://casbin.org/
https://www.openpolicyagent.org/

https://casbin.org/
https://www.openpolicyagent.org/

Microservice

-
Your Code

I
I
[. !
Some Client I Some Entity !
}4—» «————»
«Subject» Iy AEP «Object» |
I) I
I
I

p—

L <PIP»

Depending on the PDP deployment
and integration option, it can be part of
your code, run alongside your service
as a sidecar, or—as shownhere —be—- — — — 1 — — — - -
deployed as a separate service.

A,

Other Services

I
PAP PIP»

Policy Repository

Figure 4.2: Centralized Service-Level Authorization

The microservice continues to act as the PEP, calling into the PDP to make
access decisions during request handling. To make an authorization decision,
the PDP requires attributes, which - depending on the PDP deployment options
mentioned above - may either be available within the service or retrieved from
external sources (PIPs). Some PDPs support data-fetching logic within the policy
itself, allowing them to directly retrieve the necessary attributes at runtime. This
is represented by 1 and 2 in the diagram above. Both connections are conceptual
and represent logical communication paths.

Although this pattern significantly improves the maintainability and consistency
of access control logic, it also introduces new challenges and does not resolve all
the limitations inherent in the previous pattern. It’s important to note that as-
pects such as performance, failure resilience, and auditability - including support
for “before-the-fact” audit — largely depend on the type of PDP and its integration
approach (e.g., embedded, sidecar, or external). These trade-offs are discussed
separately in PDP Deployment & Integration Options.

Pros

Policy governance: Policies can be centrally defined, versioned, reviewed, and
audited, independent of the service’s implementation language.

Policy layering: The model allows for both global (e.g., security team-defined)
and local (e.g., service team-defined) policies to coexist. This enables clearer
separation of concerns and better alignment with organizational structure and
responsibilities.

Improved monitoring: All decisions can be consistently logged and moni-
tored, assuming proper instrumentation.

Team autonomy: Teams remain responsible for their services and their poli-
cies, with local enforcement and minimal external dependencies. This aligns
well with independent team ownership and domain-driven design principles.
Enhanced testability: Authorization logic can be tested independently of the
microservice business logic.

Cons

Policy distribution complexity: Policies are now decoupled from the code,
so mechanisms are needed to deploy the correct version of each policy to the
appropriate service instances.

Context sharing: PDPs do not inherently have access to the microservice
context. Developers must design mechanisms to assemble and pass the right
attributes into the PDP for evaluation.

Coverage gaps: Some frameworks expose endpoints by default, often without
offering hooks for policy enforcement. Teams may also just forget to add the
required logic to some endpoints. Combined with poor or misleading docu-
mentation, this can result in unintentionally exposed functionality and missed
access control. Common examples include health and metrics endpoints (e.g.,
Spring Boot Actuator), auto-generated documentation routes (e.g., FastAPI or
OpenAPI Uls), or static routes in frameworks like e.g., Express.js.
Incomplete enforcement observability: While policy decisions are consis-
tently logged, there’s often no visibility into whether those decisions were
correctly enforced across all code paths. Missing instrumentation or scattered
enforcement logic makes it difficult to validate effective protection, investigate
incidents, analyze system-wide access patterns or detect abuse.

Due to these remaining gaps, “accept by default” behaviors remain a real risk,
leading to broken access control vulnerabilities.

4.3 Edge-Level Authorization (Classic)

This pattern aims to address several shortcomings of service-level access con-
trol patterns, particularly inconsistent enforcement, policy sprawl, and limited
observability. Instead of tying PEP-related logic in each service, access control
is moved to the system’s perimeter - typically implemented via API gateways,
ingress controllers, or reverse proxies.

Some Entity

SomeClient |, |
«Subject» < BER N «Object»

Depending on the PDP deployment
and integration option, it can be part of
the edge component, e.g. an ingress
proxy, run alongside it as a sidecar,or | !
— as shown here — be deployed as a l e e e e e e e e e == |
separate service. | T oo oo o oo s s

Other Services

>
PDP < «PIP»

PAP >
Policy Repository

Figure 4.3: Edge-Level Authorization (Classic)

Since authorization must follow authentication, this pattern tightly couples au-
thentication and authorization at the network boundary. Gateways or proxies
serve as the PEP, and either evaluate policies locally, using embedded logic, or
delegate decisions to an external PDP.

All external traffic flows through the edge component, making this the first pat-
tern that guarantees every inbound request is observed and subject to access
control logic. As with the previous pattern, aspects such as performance, failure
resilience, and auditability are not covered here but are discussed in PDP Deploy-
ment & Integration Options instead.

Pros

Consistent enforcement: All inbound requests pass through a centralized
enforcement point, ensuring uniform application of policies and reducing the
likelihood of unprotected endpoints (“no accept by default”).

Policy governance: Policies can be centrally defined, versioned, reviewed, and
audited, independent of the service’s implementation language.

Policy layering: The model allows for both global (e.g., security team-defined)
and local (e.g., service team-defined) policies to coexist. This enables clearer
separation of concerns and better alignment with organizational structure and
responsibilities.

Best observability: All external access attempts are visible and can be logged
centrally, supporting effective monitoring, alerting, and forensics.

Cons

Socio-technical challenges: In many organizations, API gateways are oper-
ated by infrastructure or platform teams, meaning development teams cannot
directly manage authorization policies or authentication configurations. This
separation of responsibilities requires close coordination between developers
and operations/security, which often reduces delivery velocity due to commu-
nication and process overhead, especially in complex ecosystems with many
roles, evolving access control rules, and the need for flexible authentication
flows.

Policy distribution complexity: Policies are decoupled from the code, so
mechanisms are needed to deploy the correct version of each policy for the
appropriate service instances.

Authentication limitations: Edge components only support a single authenti-
cation configuration per listener or route group. Supporting multiple identity
providers, per-endpoint authentication flows, or more advanced patterns -

such as dynamic consent, step-up authentication, or conditional logic based
on subject actions - is difficult or impossible without custom logic or deep
integration.

Context sharing: Edge components only have access to request-level
attributes (e.g., headers, paths, IPs). This makes it difficult to evaluate
fine-grained, object-level, or business-context-sensitive access decisions.
Enforcement blind spots and defense-in-depth violations: Since the edge
only governs ingress traffic, any internal traffic (e.g., service-to-service calls)
or network misconfigurations may bypass enforcement entirely - violating the
defense-in-depth principle and creating a single point of failure.

Single point of failure: Misconfigurations, or performance degradation can
impact large parts of the system at once.

4.4 Edge-Level Authorization (Modern)

This pattern evolves the classic edge-level authorization approach to overcome
its key limitations. While enforcement still occurs at the perimeter via proxies or
gateways, this approach allows per-service customization through service-specific
rules — declarative definitions of how identity and context are gathered, how
authorization is performed, and how decisions are propagated - forming explicit
Authorization Contracts. These contracts manifest as structured, signed data (e.g.,
JWT claims or enriched signed headers) that the edge proxies or gateways relay to
downstream services. This explicit propagation of authorization context ensures
that internal service-to-service calls rely on a trusted, verifiable authorization
boundary, addressing common concerns around enforcement blind spots and
defense-in-depth violations typically associated with edge-only models. By mak-
ing authorization an explicit API-level contract, teams can confidently decen-
tralize enforcement without creating single points of failure or gaps in access
control.

Instead of embedding rigid policy logic or centralizing control in infrastructure
teams, this pattern emphasizes composability, autonomy, and observability, en-
abling each team to define how their endpoints are protected, while still benefiting
from centralized governance and enforcement guarantees. As with the previous

Edge-Component Microservice [

Your Code

Some Client R Some Entity
«Subject> PEP authorization contract «Object»

rrrrrr US@S-- === == --s---ooo- P Rule
Depending on the PDP deployment
and integration option, it can be part of @ ,,,,,,,,,,,,,,,
the edge component, e.g. an ingress - —-—————
proxy, run alongside it as a sidecar, or
— as shown here — be deployed as a
separate service.
4 h
PDP @ Olhe([PS"eprlllces

K J

PAP —
Policy Repository

Figure 4.4: Edge-Level Authorization (Modern)

pattern, aspects such as performance, failure resilience, and auditability are not
covered here but are discussed in PDP Deployment & Integration Options
instead.

Pros

Consistent enforcement: Uniform application of policies at a centralized
point prevents unprotected or overlooked endpoints.

Policy governance: Policies remain versioned, reviewed, and auditable, often
authored centrally but can be referenced declaratively in service-specific con-
tracts.

Best observability: All external access attempts are visible and can be logged
centrally, supporting effective monitoring, alerting, and forensics.

Rapid prototyping: Through Authorization Contracts, teams can experiment
with different authorization models (e.g., embedded JWT claims, header-based
roles, etc.) without relying on the infrastructure components.

Context sharing: The proxy can fetch contextual data from arbitrary PIPs, en-
abling context-sensitive decisions based on domain-specific attributes, object
metadata, or subject state.

Service autonomy: Authorization Contracts empower microservice teams to
define their own access control needs declaratively, supporting domain-driven
service ownership without duplicating enforcement logic.

Authorization context propagation: The system can rewrite identity and au-
thorization responses from the PDP into formats that match each service’s ex-
pectations (e.g., structured JWTs, plain or signed headers), decoupling service-
specific logic from authorization protocols.

Secure by default: The use of declarative contracts and centralized enforce-
ment reduces misconfiguration risks and prevents implicit access grants.

Cons

Policy distribution complexity: Ensuring the correct version of a policy is
evaluated in the context of the specific service version requires additional
coordination. This mainly depends on PDP capabilities and tooling.

Contract governance: While Authorization Contracts empower teams with au-
tonomy, it requires clear guidelines and automated validation tools to prevent
misconfiguration or misuse.

Single point of failure: Misconfigurations, or performance degradation can
impact large parts of the system at once.

4.5 Sidecar-Level Authorization

This pattern is a variant of Edge-Level Authorization (Modern), where the PEP
is not deployed at a shared system perimeter, but instead colocated with each mi-
croservice as a dedicated sidecar proxy. All inbound traffic to the service is routed
through this proxy, which is responsible for authorization decision enforcement,
and propagation of authorization context to the actual microservice.

Conceptually, the sidecar proxy assumes the same role as an edge component in
the previous pattern, but at a finer granularity: one enforcement point per service
rather than one per environment or cluster. The proxy remains responsible for

enforcing the resulting decisions and for rewriting or injecting authorization
contexts (e.g., structured headers or signed tokens) before forwarding the request
to the application.

Microservice =
Eiaet;rgrgx; 7777777777 Y;U:ngg 777777777
Some Client Some Entity
q D ——— p
«Subject» BER authorization contract «Object»
L A = J
rrrrrrr USES------r--====m===-P Rule
\ 4 @ A 4
Other Services
PDP «PIP»
A
v Depgnding on the I_DDP_deponment
P _and integration option, it can be part of
N ~__— the sidecar proxy, run alongside it as a
PAP > sidecar, or — as shown here — be

deployed as a separate service.

),

Figure 4.5: Sidecar-Level Authorization

As with the previous pattern, policy evaluation itself may happen locally within
the proxy, via an embedded or sidecar PDP, or be delegated to an external PDP
service. This approach shares also many of the same advantages and drawbacks
as the edge-level model, while reducing the single-point-of-failure characteristics
typically associated with centralized edge components.

Pros

Consistent enforcement: Uniform application of policies at a centralized
point prevents unprotected or overlooked endpoints.

Policy governance: Policies remain versioned, reviewed, and auditable, often
authored centrally but can be referenced declaratively in service-specific con-
tracts.

Rapid prototyping: Through Authorization Contracts, teams can experiment
with different authorization models (e.g., embedded JWT claims, header-based
roles, etc.) without relying on the infrastructure components.

Context sharing: The proxy can fetch contextual data from arbitrary PIPs, en-
abling context-sensitive decisions based on domain-specific attributes, object
metadata, or subject state.

Service autonomy: Microservice teams can define their own access control
needs declaratively, supporting domain-driven service ownership without du-
plicating enforcement logic.

Authorization context propagation: The system can rewrite identity and au-
thorization responses from the PDP into formats that match each service’s ex-
pectations (e.g., structured JWTs, plain or signed headers), decoupling service-
specific logic from authorization protocols.

Secure by default: Since authorization decisions are enforced before requests
reach application code, application of this pattern reduces misconfiguration
risks and prevents implicit access grants.

Cons

Operational complexity: Each service introduces an additional runtime com-
ponent, increasing deployment, configuration, and operational overhead.
Fragmented observability: Observability becomes fragmented, since moni-
toring is limited to individual services unless all services in a given context
adopt the same pattern.

Resource overhead: Sidecar proxies consume CPU, memory, and network
resources, which can be significant in large-scale environments with many
small services.

Policy distribution complexity: Ensuring the correct version of a policy is
evaluated in the context of the specific service version requires additional
coordination. This mainly depends on PDP capabilities and tooling.

Contract governance: While Authorization Contracts empower teams with au-

tonomy, it requires clear guidelines and automated validation tools to prevent

misconfiguration or misuse.

Partial adoption risks: If only some services adopt the pattern, security guar-

antees become uneven, and architectural assumptions about enforcement con-

sistency may no longer hold.

4.6 PDP Deployment & Integration

Options

The choice of PDP deployment — embedded, as a sidecar, or external - significantly

impacts performance, auditability, and supported authorization models. The table

below summarizes the key trade-offs:

Embedded
Aspect PDP Sidecar PDP External PDP
Location as a library as local separate PDP service
sidecar
process
Latency no impact very low higher latency due to network
latency hops
Before-the- limited limited possible system-wide
Fact Audit
Access PBAC, e.g., PBAC, e.g., PBAC, ReBAC, and NGAC
Control Casbin OPA (e.g., OPA, OpenFGA,
Models SpiceDB)
Dependencies none (self- none (self- Relies on PDP service
contained) contained) availability

4.6.1 On Data Source Integration

The need to fetch or inject data required for policy evaluation introduces oper-
ational challenges across all authorization patterns - including Decentralized
Service-Level Authorization. This responsibility may lie with the PEP (e.g., a
service or a proxy) or the PDP itself. Accessing PIPs at runtime can compli-
cate network configurations, conflict with segmentation or firewall policies, and
broaden the system’s attack surface. These concerns require careful architectural
consideration, which is also something the next chapter aims to support you
with.

5 Decision Dimensions for
Authorization Patterns

The discussion of Authorization Patterns might suggest that Decentralized
Service-Level Authorization should be avoided due to drawbacks such as scat-
tered logic and limited auditability. However, this is not always the case. The suit-
ability of an authorization pattern depends on the system context. This context
can be analyzed along several key dimensions that guide the choice of appropriate
patterns and help keep the system secure, manageable, and responsive, as out-
lined in this chapter.

Cost considerations

You might be wondering whether cost should be treated as a separate
dimension - and | completely agree. After all, we don't do security for its own
sake, but to support (or even enable) the business. That's why cost is always
present in the background. Throughout this primer, I've tried to reflect that
- whether by discussing operational overhead, maintenance effort, or other

practical trade-offs.

5.1 Policy Characteristics

Policy characteristics define how policies are authored, maintained, and updated,
influencing their management and distribution. Two key dimensions, ownership
and change latency, guide these processes, which are critical for operationalizing
authorization systems.

5.1.1 Policy Ownership

This dimension identifies who owns and maintains a particular policy. Ownership
matters in two ways: it often correlates with how composable or layered the

policies need to be, and it also defines governance boundaries, determining who
is authorized to create, modify, and deploy policies.

Microservice Team: Policies authored and maintained by the team respon-
sible for a specific microservice. These are typically focused on local enforce-
ment logic and closely tied to internal service semantics. For example, a recom-
mendation service defines request filters that exclude certain products based
on internal scoring thresholds or active experiments.

Domain Level: Policies shared across services within a business domain, often
requiring coordination between teams. These policies may be abstracted and
reused across multiple services, like a subscription domain enforces business
rules about grace periods, usage limits, or billing thresholds that are referenced
by billing, customer portal, and notification services.

Central (Organization Level): Policies governed by a central security, com-
pliance, or platform team. These typically apply across domains or services
and provide the foundation upon which more granular policies are built, like
an organizational policy that defines acceptable data residency constraints or
standard access conditions for administrative APIs.

5.1.2 Policy Change Latency

This dimension describes how quickly a policy change must be reflected in the
system once introduced. It should not be confused with the frequency of policy
changes (how often they occur), or with input data freshness (how quickly
attribute updates must be reflected in policy decisions). While policy change
frequency influences governance and authoring processes, the latency dimension
defines how fast policies must be deployed and propagated across services to take
effect.

The term governance refers to a set of responsibilities and processes that keep authorization
reliable. It defines who can create, change, or deploy policies, configurations, and the data
those policies rely on. It also includes practical concerns - such as who owns a policy, who can
update the PDP or its inputs, which attributes PEPs may send, and how changes are reviewed or
audited. Put simply, governance is about keeping policies and data consistent so deployed rules
don’t break and the system remains reliable and robust. In this article, whenever governance
is mentioned, it refers to some or all of these aspects, depending on the context.

Immediate: Policies must take effect as soon as they are changed (seconds
to minutes). Example: A financial system introduces a temporary block on a
specific payment method due to detected processing errors. The rule itself
(block this method) must be enforced immediately across all services to pre-
vent further transactions.

Fast: Policies should be applied within hours to days. Example: A sales team
requests an update to discount eligibility rules for enterprise customers. Once
approved and authored, the new policy should be effective by the next business
day.

Delayed: Policies can be applied on a longer timescale (weeks or more). Exam-
ple: A data retention policy update mandated by new legislation is scheduled
for enforcement with the next release.

5.2 Policy Distribution Strategies

The policy change latency dimension, described in the previous chapter, defines
how quickly policy changes must take effect once introduced. These latency
requirements directly influence how policies are delivered to PDPs to ensure they
are available for evaluation in the system, which is what this chapter addresses.
Here, we discuss the two primary strategies along with their respective trade-
offs.

5.2.1 Out-of-Band Delivered Policies

Policies are proactively sent to the PDP and stored locally for evaluation. This
strategy suits policies that tend to have immediate to fast change latencies, re-
quiring agile, incremental updates without disrupting service availability.

PDP] PAP

policy

Figure 5.1: PAP sends policy to the PDP

Pros

Enables applying policy changes dynamically without redeploying PDPs, sup-
porting high availability.

Cons

Requires robust synchronization mechanisms to deploy the correct versions
of required policies to each PDP instance.

Demands governance mechanisms to ensure that policy deployment aligns
with ownership boundaries. E.g., microservice teams should only be able to
update their own policies, while domain or central teams retain control over
shared or organizational policies.

This is where policy ownership becomes a critical factor, as it directly shapes
the enforcement and governance model for policies and who is allowed to deploy
which one.

5.2.2 Embedded Policies

Policies are embedded directly within the PDP (e.g., as code, or as static config-
uration) and cannot be updated without restarting or redeploying the PDP. This
approach is best suited for policies that have delayed change latencies. Stability
and operational simplicity are typically prioritized over agility in such cases.

PDP

policy

Figure §.2: Embedded policy

Pros

Simplifies policy management, as policies are bundled with the PDP.

Cons

Increases deployment overhead, as changes involve rebuilding and/or rede-
ploying the PDP.

Limits scalability for needs with frequent policy adjustments.

Introduces governance challenges, since the team deploying the PDP effec-
tively decides which policies get bundled and activated, even if those policies
are owned by different teams or organizational units.

5.3 Data Characteristics

Data characteristics define how information used during policies evaluation is
sourced and managed. The first subchapters focus on the input side and introduce
three key dimensions: input data locality, input data cardinality, and input
data freshness. The last chapter covers the characteristics of the output data -
the output data cardinality.

Locality describes the scope within which data is relevant and shared, cardinality
determines how much data must be managed, and freshness defines how often
that data must be refreshed or fetched in real time. Taken together, these dimen-
sions shape the feasibility and efficiency of authorization system design.

5.3.1 Input Data Locality

Locality defines the boundaries of data relevance and reuse, from tightly scoped
to broadly shared:

Service-Local Data: Data relevant only within a single service, not reused
elsewhere. For example, service-specific configuration flags affecting autho-
rization decisions only inside that service, or ephemeral session attributes used
exclusively by the service’s internal logic.

Domain-Level Data: Data shared across multiple services within the same
bounded context or domain. Examples include ownership metadata of doc-
uments in a document management domain, customer account status (e.g.,

frozen, active, under review) used by both billing and support services, or time-
based availability windows for booking or scheduling services.

Organization-Level Data: Relevant across domains or the entire system, such
as regulatory classification of data (e.g., “EU personal data”), tenant-level

subscription tier or plan.

5.3.2 Input Data Cardinality

Cardinality refers to the number of distinct attributes across all subjects or re-
sources. It determines how easily data can be cached or distributed in an access
control systems.

High: Many distinct data items, often tied to individual requests or users (e.g.,
a real-time risk score or geoip information).

Medium: Moderate number of distinct data items typically shared across sets
of subjects or resources (e.g., project IDs).

Low: Few distinct data items. For example, environment labels (e.g., “produc-
tion”, “staging”), or business unit identifiers (e.g., “HR”, “Finance”, “R&D”).

5.3.3 Input Data Freshness

This measures the maximum acceptable delay between an attribute value chang-
ing, and that change being reflected in authorization decisions.

High: Changes must be reflected immediately or within seconds to maintain
accurate authorization (e.g., real-time risk scores, breach detection flags).
Medium: Changes should be reflected within minutes to hours, balancing
freshness and performance (e.g., feature toggles, subscription tiers).

Low: Changes can be reflected with delays of hours to days without significant

impact.

5.3.4 Output Data Cardinality

As written in the story chapter, policy decisions often include more than just
simple "permit" or "deny" responses. They may carry structured outputs that

shape the final data set accessible to a subject - such as lists of permitted object
IDs, query filters, or advices.

These outputs fall into two broad categories:

Metadata: Optional guidance or instructions to the PEP (e.g., log this access,
display a warning).

Decision Data: The core result of policy evaluation - potentially including
constraints, and similar information describing what access is allowed.

While the PDP returns the decision, its structure and size - the output cardinal-
ity — are defined by the policy logic, which reflects the needs of the consuming
application. For example, if an application must render only the documents a user
is allowed to see, the policy may be implemented to return a list of permitted
document IDs, increasing output cardinality.

That way, the output cardinality can be grouped into three levels:

Low: Simple decisions with minimal metadata, suchas { "result": true }
or{ "decision": "permit" }.

Medium: Decisions include multiple structured attributes or small lists. Exam-
ple: { "allowed_projects": ["A", "B"] }.

High: Large or complex result sets, such as thousands of object IDs. These
often require pagination or streaming. Example: { "resources": ["docl",
"doc2", ..., "doc5000"] }.

5.4 Policy Input Data Distribution
Strategies

While the input data freshness dimension defines how quickly data changes
must be reflected in access control decisions, input data cardinality can, de-
pending on the PDP type, limit how much information can be stored or cached
in practice, and with that also the ability to fully achieve that reflection. This
challenge is especially relevant in PBAC systems.

This tension highlights a broader challenge for all approaches relying on embed-
ded or external PDPs: how to make the right data available at evaluation time
without overwhelming the system. To address this challenge, different strategies
for distributing input data to PDPs have emerged. Each comes with distinct trade-
offs, and their suitability depends on the PDP type (e.g., PBAC, ReBAC, NGAC) as
well as on system requirements for performance, scalability, and freshness.

Each strategy addresses different operational concerns, and no single approach
works universally. Mature systems often combine them, guided by data character-
istics, performance targets, and architectural constraints.

5.4.1 On-Demand Data Pull

The PDP fetches data from PIPs at the time of policy evaluation, typically via APIs
or database queries. PDPs supporting this option typically allow for configurable
caching of the pulled data.

"authorize"
request

get data request

<> data

Figure §.3: On-Demand Data Pull

Pros

Ensures data freshness by retrieving the latest attributes values from PIPs at
evaluation time.

Enables handling of high-cardinality data without preloading large datasets
into the PDP.

No need for data synchronization mechanisms, since the PDP always queries
the source directly.

Since the PDP does not need to maintain a local copy of data, the memory or
storage demand of the PDP is low.

Governance responsibility is at the policy author - the policy defines where the
data is retrieved from.

Cons

Increases latency due to network calls to PIPs during evaluation, which nega-
tively impacts performance, especially for high-throughput systems.
Introduces dependencies on external systems, reducing resilience if PIPs are
slow or unavailable, potentially leading to cascading failures, degraded service
or fallback decisions.

Limits the usable PDP types, as ReBAC and NGAC implementations typically
don’t support this strategy.

Degrades system performance when attributes are accessed repeatedly, espe-
cially for high-throughput systems.

While caching (if supported by the PDP) can mitigate some of these drawbacks,
it undermines the freshness guarantee, potentially leading to incorrect authoriza-
tion decisions. Moreover, caching also negates the low-storage advantage listed
above - especially for high cardinality data.

5.4.2 Out-of-Band Data Push

Data is proactively sent to the PDP in advance, and stored in memory or a local
data store for faster access during evaluation.

Pros

Improves performance by storing data locally (e.g., in memory or a local
database), enabling faster policy evaluation.

Enhances resilience, as the PDP can operate independently of PIP availabil-
ity, allowing PDP instances to remain lightweight and focused on evaluation,
which improves their scalability.

)
"authorize" request
at some later point
in time

PEP

data sent
proactively

PDP }‘ O] PIP

<> data

Figure §.4: Out-of-Band Data Push

ReBAC/NGAC PDP types typically require access to complete relationship
graphs or contextual data sets, which are infeasible to retrieve on-demand or
pass inline. This strategy enables those models.

Reduces load on the PDP by shifting data synchronization to other system
components, allowing PDP instances to remain lightweight and focused on
evaluation, which improves their scalability.

Cons

Requires robust data synchronization mechanisms to push updates to the PDP
instances in real-time or near-real-time, especially for data with high-freshness
requirements.

Increases memory or storage demands on the PDP, which is usually problem-
atic for high-cardinality data.

Introduces governance complexity, as mechanisms, who can write to the
event/topic the PDP listens to, or who can invoke the PDP’s API for updates,
and which specific data each party is allowed to send, must be established.

5.4.3 Request-Time Data Injection

Required data is passed directly in the request from the PEP to the PDP - an ap-
proach often referred to as inline data passing. Early-stage standardization efforts
(OpenID AuthZEN Initiative”) aim to make this interaction more consistent and

interoperable.
"authorize" | PEP 1
request U T
<> get data request @ 0
PDP PIP
<> data

Figure §.5: Request-Time Data Injection

Pros

Ensures data freshness by providing the latest attributes values from PIPs.
Enables handling of high-cardinality data without preloading large datasets
into the PDP.

Reduces load on the PDP by shifting data synchronization to other system
components (the PEP), allowing PDP instances to remain lightweight and
focused on evaluation, which improves their scalability.

Since the PDP does not need to maintain a local copy of data, the memory or
storage demand of the PDP is low.

Typically, the only option for ReBAC and NGAC systems to provide attributes
which are not stored in their databases.

Cons

Increases request size, as additional data is included in the decision request,
potentially impacting network performance.

https://openid.net/authzen-authorization-api-1-o-implementers-draft-approved/

https://openid.net/authzen-authorization-api-1-0-implementers-draft-approved/

Places the burden on the PEP (e.g., microservice or edge component) to collect
and validate data from PIPs, increasing complexity in the calling component.
Risks inconsistent data if the PEP fails to provide all required attributes or if
data collection is misconfigured, potentially leading to incorrect decisions.
Can degrade system performance when attributes are accessed repeatedly by
the PEPs.

Introduces governance complexity, as PEP configuration becomes a concern
- it determines which attributes are fetched and sent to the PDP, as changes
directly impact authorization decisions.

While caching (if supported by the PEP) can mitigate some of these cons, it
introduces the risk of stale data, potentially leading to incorrect authorization
decisions.

5.4.4 Embedded Data

Data is baked directly into the PDP’s configuration, rather than being pulled or
pushed dynamically.

PDP
o

<> data

Figure 5.6: Embedded Data

Pros

Zero runtime dependencies on external PIPs — the PDP is fully self-contained,
which simplifies deployments.
No synchronization concerns; the data is always available and consistent.

Cons

Useful for static or rarely changing information only (e.g., “environment”:
“prod”, “region”: “EU”), and impractical for medium- or high-freshness data.
Introduces governance challenges similar to those described in embedded
policies, as the team deploying the PDP effectively decides which data get
bundled and used, even if those data elements are owned by different teams or
organizational units.

5.5 Policy Output Data Handling
Patterns

As stated earlier, access control requirements often go beyond simple cases like
“can subject X read object Y?”. In practice, most requests hitting a PEP involve
multiple, context-sensitive decisions. This is especially true for read operations,
such as deciding whether to render “edit” or “delete” buttons based on a user’s
permissions.

These decisions can often be handled via batch requests, where the PEP sends
multiple access queries in a single call, and the PDP evaluates them at once,
returning one simple decision per item. However, access requests involving larger
output data sets, such as for rendering a list of articles Alice is allowed to see, can,
depending on the chosen approach, significantly affect output data cardinality
and directly influence the choice of the possible authorization patterns.

The following subchapters describe the typical patterns used in such cases.

5.5.1 PDP as Filter, aka Brute-Force Lookup

In this pattern, the PEP retrieves all potentially relevant data from a PIP (e.g., a
database or API) and iterates over each item, querying the PDP to check whether
access is permitted. If allowed, the item is included in the final result (e.g., ren-
dered HTML or returned JSON).

"authorize" ‘ Q)

request ‘ PEP is typically part of @ T

the service code and PIP

! <>‘ is a service DB, or some m
! \L ! other service
| | [
I t \
I
I
I

Figure §5.7: PDP as Filter

Pros

Simple to implement.
Works with any PDP.
Easy to debug and monitor.

Cons

High latency and poor scalability for high-cardinality queries due to repeated
PDP calls.

Increases resource consumption by retrieving more data than needed.

Tightly couples the PEP with the service’s business logic and makes external-
izing the PEP (e.g., into a proxy) impossible.

Changes to access policies typically require service redeployments or even
refactorings.

The first two cons might be partially resolved by making use of batch queries if
the PDP supports that.

5.5.2 Authorized Data Set

In this pattern, the PEP makes a single request, and the PDP returns a complete
set of allowed resources (e.g., object IDs). The PDP constructs this result based
on policy logic and available attributes.

A= "authorize" request

o8
N6
&

PDP

<> authorized data

Figure §.8: Authorized Data Set

Pros

Reduces round-trips by returning all results at once.

Simplifies PEP logic, as the PDP handles the complexity of determining the
authorized dataset.

Well-suited for ReBAC or NGAC PDPs, which can leverage internal data models
to compute permitted resources.

Cons

Externalizing the PEP to e.g., an external proxy is only feasible for low to
medium cardinality output data sets.

Might complicate error handling and monitoring of data access.

Require pagination or streaming for bigger output data sets.

Results in complex policies for PDPs implementing PBAC approaches.

Not supported by every PBAC PDP implementation.

5.5.3 Authorization Filter

In this pattern, the PEP calls the PDP, which returns a filter expression (e.g., a
SQL WHERE clause, query predicate, or attribute-based condition). The PEP then
applies this filter during data retrieval (e.g., in a database query) to fetch only the
authorized data.

(“ O >

PEP
"authorize" ‘ LZ)
request PEP is typically part of @ 7\
\ the service code and PIP
T is a service DB, or some m
<> other service

PDP ‘ PIP ‘ ‘ ‘

<> filter expression

<> authorized data

Figure 5.9: Authorization Filter

Pros

Highly efficient for large datasets - filtering happens at the PIP (data source).
Scales well with high output cardinality.

Reduces PDP load.

PDP does not need to not know all data sets.

Enables flexible PEP placement - as part of the service, or as an external proxy.

Cons

Not supported by every PDP (ReBAC und NGAC PDPs do not support that at
all).
Might complicate error handling, monitoring of data access, and diagnosing

related issues.

5.6 Performance

Last but not least, performance plays a critical role in the design of authoriza-
tion systems - especially in latency-sensitive environments. From the end-user’s
perspective, Time to First Byte (TTFB) is one of the most influential metrics, as
described in Phil Walton’s article on user-centric performance metrics .

https://web.dev/articles/user-centric-performance-metrics

https://web.dev/articles/user-centric-performance-metrics

TTFB represents the time it takes for the first byte of a response to reach the
client and reflects the perceived responsiveness of a system. It implicitly defines
the latency budget available for upstream processes — including authorization
decisions. This concept is further reinforced by the speed and human perception
thresholds™ discussed in High Performance Browser Networking .

The following factors strongly influence architecture decisions - such as PDP
placement and data handling - and directly impact whether the system can meet
that latency budget:

Policy evaluation latency: The time a PDP takes to compute a decision de-
pends on the number and complexity of policies and the input data cardinality
- i.e., how many attributes must be evaluated.

Data retrieval latency: When attributes are fetched on-demand (see Policy
Input Data Distribution Strategies), latency depends on the number of PIPs
involved, the volume of data (input data cardinality), and its locality. This can
add significant variability to response time.

Policy output handling: The output data cardinality and the selected output
handling pattern affect the time required to process and apply the result.

PDP integration overhead: Overheads include network latency (ranging from
ca. 300us on loopback to >200ms for cross-region communication), DNS reso-
lution, TLS handshake, and data serialization/deserialization. Protocol choices
(e.g., HTTP/1.1 vs. HTTP/2 vs. gRPC) can further influence this. For in-process
PDPs, these costs are minimized, though serialization costs may still apply.

Runtime resource contention: (“Busy Neighbor” effect) PDPs are typically
CPU- and memory-intensive. Co-located resource-hungry processes can signif-
icantly degrade performance if compute and memory isolation aren’t enforced.
This is especially relevant when integrating a PDP into an edge component
(either embedded or as a sidecar), which is often optimized for high IOPS

https://hpbn.co/primer-on-web-performance/#speed-performance-and-human-perception
https://hpbn.co/

https://hpbn.co/primer-on-web-performance/#speed-performance-and-human-perception
https://hpbn.co/

throughput. In such cases, embedding a PDP introduces trade-offs between
CPU-bound policy evaluation and I/O-heavy request processing.

Caching and memoization: Many PDPs implement decision caching or partial
evaluation to avoid repeated computation for deterministic inputs. These op-
timizations can reduce latency but can lead to outdated decisions and require
robust cache invalidation logic.

Additional considerations include:

Connection reuse and pooling: Using persistent connections, connection
pooling, or multiplexed protocols (like gRPC or HTTP/2) helps amortize in-
tegration overhead and reduce connection setup time.

Fallback strategies and timeouts: Systems must decide how to behave when
the PDP is slow or unavailable. Strategies such as fail-closed, fail-open, or graceful
degradation are architectural decisions that directly impact perceived perfor-
mance and security posture.

5.7 What's next

I know, this was a pretty heavy part. But it laid the groundwork needed to answer
the big question: Which authorization patterns are actually right for you?

All the pieces are already here, but to make the answer more tangible, in the next
chapter T’ll bring them together into a visual guide - a kind of map or decision
tree that makes the connections clearer. From there, we’ll build a broader pattern
language that connects authentication, authorization, and identity propagation
patterns to show how they influence each other. Finally, we’ll turn to the practical
side: what these choices mean for real-world implementations and which open-
source tools can help put them into practice.

6 Practical Considerations &
Recommendations

In the earlier chapters of this primer, I've walked you through core concepts,
explored many different authentication, identity propagation, and authorization
patterns, and we even took a few side steps to uncover what else might be rel-
evant. Along the way, I deliberately avoided making concrete recommendations,
because I wanted to ensure you had all the information needed to make educated
decisions.

Now, as promised, it’s time to put theory into practice. In this last chapter, I'll
finally derive recommendations from the insights shared so far and provide prac-
tical guidance for implementing authorization, identity propagation, and authen-
tication in real-world microservice systems - a kind of “how-to” for everything
we’ve discussed.

6.1 Authorization Patterns
Recommendations

This subchapter maps the decision dimensions to the authorization patterns,
using the trade-offs of the corresponding patterns as the primary guiding prin-
ciple. While multiple patterns may technically be applicable in a given context,
some introduce security, operational, performance, or maintenance overheads
that make them less desirable in practice. The recommendations below aim to bal-
ance these concerns, helping to avoid common pitfalls and promote architectural
consistency. Deviations may be valid in specific cases, but should be intentional -
not accidental.

The diagram below illustrates the recommended patterns based on the given
dimensions.

If the input data locality required for the decision is service-local, Decentral-
ized Service-Level Authorization is ideal - regardless of other dimensions -
since the data’s isolated scope avoids all the drawbacks discussed earlier.

Decentralized

input data
locality

Qo

Service-Level Service-Level
Authorization

else

output data) Centralized Service-
cardinality i Level Authorization

Modern Edge-Level

input data
locality

Y

else Authorization

Request-Time
Data Injection

Organization Wide

Classic Edge-Level
Authorization

Figure 6.1: Recommended Authorization Patterns

If the input data locality extends beyond Service-Local - i.e., the same data
is shared across multiple services — and the output data cardinality is high
while using Authorization Filters is not feasible, then Centralized Service-Level
Access Control is better suited to the context.

In all other cases, Modern Edge-Level Authorization tends to offer the best
trade-offs.

Classic Edge-Level Authorization may still be suitable when input data is
organization-wide, output cardinality is low, and all relevant data is either
pulled by the PDP at request time at request time or pushed to the PDP
out-of-band in advance.

Implications of pattern selection

Pattern selection is not an isolated decision. The described patterns form a
broader pattern language, where one pattern often implies or necessitates
the use of another. For instance, selecting Modern Edge-Level Authoriza-
tion introduces the concept of an Authorization Contract, which must be
verified within each service. These contracts represent service-local data,
and verifying them naturally leads to adopting Decentralized Service-Level

Authorization inside the respective services.

Example: The Blog Platform

To illustrate how multiple authorization patterns may compose into a coherent
solution, let’s return to the earlier story of Alice and the blog platform.

The system defines two access requirements:

Listing articles: Every user is allowed to see the list of available articles,
including the title, publication date, author, and a short excerpt.

Reading articles: Access to the full content depends on the user’s subscription
level and the number of full articles already read that day.

These requirements map naturally to different authorization patterns:

For listing articles, the access logic relies solely on local data stored within the
article service. Since the input data is entirely service-local, the Decentralized
Service-Level Authorization pattern is ideal - no orchestration or coordination
with other services is required.

Reading a full article, however, requires accessing data managed by
multiple services: the subscription service (to verify Alice’s plan)
and a usage-tracking service (to check her daily quota). Because
the input data is not local and the output cardinality is low - the
system makes a decision about a single article - Modern Edge-
Level Authorization is a better fit. The payload of the Authorization
Contract introduced here might, for example, look similar to: { "sub":
"0f4a6554-9069-483d-bc8b-86c6943f22f2", "{iat": 1757378963,

"requested_article": "<uuid>", "allowed_representation": "<full
| excerpt>", ... }, which then leads to verifying this contract within the
article service using Decentralized Service-Level Authorization.

Example: A Document Management System

Let’s now shift the service landscape slightly to explore the applicability of the
remaining patterns. Imagine Alice now wants to access her employer’s document
management system.

Listing documents: Users can only list documents related to the projects, they
are a team member of

Reading documents: Users can only read documents related to the projects,
they are a team member of

These map to the following patterns:

Listing documents requires access to the project members service. Given the
typically high output cardinality, Centralized Service-Level Authorization is
the best fit.

While reading a document could use the same pattern, Modern Edge-Level
Authorization is a better fit. It simplifies the implementation of the document-
rendering service and ensures that all exposed endpoints - not just the docu-
ment delivery one - are consistently subject to access control.

Last but not least, the performance requirements and input data cardinality
strongly influence the PDP choice - PBAC, ReBAC, or NGAC - and integration
approach - embedded vs. external. However, this decision may also be shaped by
the available tooling for policy and policy input data distribution - which brings
us to the next chapter.

6.2 Data and Policy Distribution in
Practice

Building on the concepts introduced in Policy Input Data Distribution Strate-
gies and Policy Distribution Strategies, this chapter demonstrates how the out-

of-band data push and out-of-band delivered policies approaches translate into
concrete architectures for real-world PDP deployments. These architectures —
whether based on embedded PDPs or standalone PDP services - incorporate
specific control-plane components to manage initialization, configuration, and
runtime updates, ensuring that PDPs remain synchronized and deliver accurate

authorization decisions in dynamic environments.

These control plane components are:

Configuration Repository: Stores the desired configuration for each PDP
instance, including detailed references to required policies — such as their
repository locations and version information - as well as PIP integration
settings, including endpoints, supported protocols, credentials, and other
communication-specific parameters.

Distributor: A control-plane component responsible for distributing configu-
ration that enables Aggregators to obtain and apply data and policy artifacts. It
retrieves configuration from the Configuration Repository and monitors it for
changes. Whenever an Aggregator connects or updated configuration becomes
available, the Distributor pushes the applicable configuration to that Aggre-
gator. Depending on the implementation, it may also act as a relay for data
updates from PIPs, forwarding only the relevant updates to each Aggregator
based on their configured subscriptions.

Aggregator: A control-plane component responsible for configuring a PDP
instance with the required policies and data. The Aggregator acts as a client of
the Distributor, connecting to it to receive its configuration and any updates.
Based on this configuration, it retrieves policies and data from designated
sources — policy repositories for policies and PIPs for data — and monitors
these sources to ensure the PDP remains synchronized with the desired state.
Monitoring of policies depends on the capabilities of the policy repository
and typically involves polling. For data updates, Aggregators may either pull
directly from PIPs or receive change notifications via decoupled mechanisms
such as message buses or webhooks. Event-based delivery is often preferred
due to its scalability and resilience, but it’s not strictly required.

The following setup illustrates this approach, showing how a PDP can be provi-
sioned with policies and data while supporting runtime updates.

AR I

O
4@—> [F=R > Microservice

The PEP can reside

within the microservice, an event distribution system is
in a sidecar proxy, or at typically implemented as a
the edge message bus, but may also be

e based on webhooks

Often, the Distributor
PDP monitors data updates and
relays them to the @

A appropriate Aggregators
ol

Aggregator
Distributor

*—@— Microservice

The Aggregator is A A A N A
always deployed as a

side-car to the PDP @ w @
Y

Y

Configuration
Repository

Policy
Repository

Figure 6.2: Embedded PDP Data & Policy Distribution

The Distributor starts, retrieves configurations from the Configuration Repos-
itory, and waits for Aggregator connections.

An Aggregator starts, connects to the Distributor, and receives its configura-
tion.

The Aggregator pulls policies from the specified Policy Repository.

It fetches initial data sets from the designated PIPs.

The Aggregator configures the PDP with the retrieved policies and data.
When a PEP intercepts a request, it queries the PDP for an authorization
decision. If the request is allowed and forwarded to the microservice, it may
result in updates to microservice-managed data.

Resulting update events are sent to the event distribution system and received
by the interested Aggregators.

Aggregator updates the PDP’s data sets accordingly.

Similar setups have been successfully adopted in large-scale production environ-
ments. For example, Netflix presented a comparable design at KubeCon 2017 .
Their terminology differs slightly: the component shown as Aggregator in the
diagram above is called the “AuthZ Agent”, and instead of letting each agent
independently collect required data, Netflix introduced a central “Super PIP”
(which they call the “Aggregator”) positioned between the event distribution
system and the agents. This component preprocesses and routes relevant data
updates, while the AuthZ Agents remain responsible for configuring and updating
the embedded PDP instances.

An open-source project that implements a similar architecture is OPAL - Open
Policy Administration Layer-, which allows managing OPA" and Cedar-Agent
instances. Compared to the diagram above, OPAL delegates responsibility for
relaying data updates to the Distributor, which pushes relevant changes to each
Aggregator instance.

Applicability beyond PBAC

Although both examples above use PBAC PDP engines, the architectural
principles described here are not specific to PBAC engines. The control-
plane components - configuration repository, distributor, and aggregator
- as well as the mechanisms for policy and data provisioning, apply equally
to other PDP types, such as ReBAC and NGAC. Unlike PBAC PDPs, which
typically store policies and data only in memory, ReBAC and NGAC PDPs
maintain persistent storage. In such deployments, the distributor is typically
implemented as a CI/CD pipeline to handle automated provisioning and

policy updates and does not manage runtime data updates.

This out-of-band data push approach introduces an important challenge: Con-
sider a microservice (e.g., Service A) that updates its own database after a suc-
cessful request and emits a corresponding domain event intended to notify PDP-

https://www.youtube.com/watch?v=R6tUNpRpdnY
https://github.com/permitio/opal
https://www.openpolicyagent.org/
https://github.com/permitio/cedar-agent
https://microservices.io/patterns/data/domain-event.html

https://www.youtube.com/watch?v=R6tUNpRpdnY
https://github.com/permitio/opal
https://www.openpolicyagent.org/
https://github.com/permitio/cedar-agent
https://microservices.io/patterns/data/domain-event.html

related infrastructure (some of the interested Aggregators via an event bus). If
the event is lost, delayed, or not processed correctly, the PDP’s internal state may
become outdated. As a result, future authorization decisions - possibly in other
services — may be based on stale or incomplete data, leading to incorrect access
grants or denials.

This situation reflects a classic distributed transaction problem: changes in
the microservice and the state change in the PDP must eventually converge,
but there’s no atomic commit across both systems. Since traditional distributed
transactions are often impractical or undesirable in such architectures, solutions
may range from simple reliable event delivery mechanisms, like the Transactional
Outbox~ to more sophisticated patterns like Saga’ if acknowledgement of event
delivery is required.

6.3 Policy Input Data Governance

A note of caution

Neglecting proper governance of policy input data can break the entire
authorization architecture: even small changes - renaming a field, changing
a type, or omitting an attribute — can prevent policies from being evaluated
correctly, and without governance, fixing such issues becomes like looking

for a needle in a haystack.

As in the previous chapter, this chapter builds on the concepts introduced in
Policy Input Data Distribution Strategies, but focuses on challenges common to
all strategies that were not addressed earlier:

Structural and semantic consistency: ensuring that supplied data matches
the assumptions encoded in policies, such as the existence of user identifiers,
values for resource ownership, etc., as a renaming of a field, change of type, or

https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/saga.html

https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/saga.html

omission of an attribute may prevent policies from being evaluated correctly,
creating the risk of incorrect authorization decisions.

Consumer visibility and coordination: knowing which policies depend on
which attributes so that producers can coordinate safely with policy owners
before making schema or semantic changes.

These challenges are inherent to distributed architectures. Whether in Big Data
pipelines spanning multiple data sources and transformations, or if multiple
microservices are communicating to each other to execute some business func-
tion, in both domains, data or messages can break consumers if schemas or
semantics change unexpectedly, and accountability for who relies on which data

is unclear.

To address this, explicit agreements — often called data contracts in Big Data
domain or consumer driven contracts in microservice architectures - codify the
shared expectations between producers and consumers and define the “API of
data” being exchanged. These types of contracts typically define schema, seman-
tics, and quality guarantees, and also provide mechanisms for coordinated change
management.

Adapting the same principles to authorization architectures bring similar bene-
fits:

Communicating the Data APIL: Contracts act as a shared reference between
PIPs (data producers) and policy authors, clarifying which attributes are re-
quired and how they are structured.

Protecting Consumer Expectations: Contracts can include domain
constraints, value ranges, or other guarantees, helping policy assumptions
remain valid as data evolves.

That would also ensure that data supplied to PDPs - whether pulled on-demand,
pushed out-of-band, or passed inline - is complete, correctly typed, and semanti-
cally valid before reaching the PDP.

Standards such as the emerging Open Data Contracts Standard™ provide struc-
tured ways of defining such contracts, while related tooling like the Data Contract

https://bitol-io.github.io/open-data-contract-standard/v2.2.2/home/

https://bitol-io.github.io/open-data-contract-standard/v2.2.2/home/

CLI" supports validation and can also be used for enforcement. Alternatively,
open-source governance platforms such as Apache Atlas = can be adapted to
manage metadata, lineage, and schema evolution, or tools like Pact ' can serve
as a practical step toward implementing such contracts by codifying consumer
expectations and validating producer behavior - all helping ensure that exchanged

data meets structural and semantic requirements.

6.4 Interplay Between Authorization,
Authentication, Identity Propagation
Patterns, and Zero Trust

Authentication (who you are), authorization (what you’re allowed to do), and
identity propagation (how the results of authentication are securely carried for-
ward) each address distinct concerns, yet they are deeply interconnected. The
usage of one affects the requirements of the others, and vice versa. And only by
aligning them consistently can identity, access, and trust be continuously verified
and enforced across the system. As a natural consequence, the system as a whole
comes to embody the principles of Zero Trust:

Never trust by default: Treat every request as untrusted, even inside the same
network perimeter.

Always verify everything: Continuously and adaptively authenticate and au-
thorize all requests, taking real-time signals, like user behavior or device state
into account.

Least privilege: Grant subjects, be it a user, device, or e.g., a service, only the
permissions they need, minimizing attack surface.

Micro-segmentation: Divide networks and systems into isolated micro zones
to limit lateral movement.

Assume breach: Operate as if attackers are already inside - monitor, log, and

audit continuously.

https://cli.datacontract.com/
https://atlas.apache.org/
https://pact.io/

https://cli.datacontract.com/
https://atlas.apache.org/
https://pact.io/

Protect data: Strongly encrypt sensitive information in transit and at rest to
ensure confidentiality and integrity.

To achieve this alignment, it helps to determine the authorization approach first,
then select identity-propagation mechanisms that can reliably convey attributes
about the subject, and only then select the proper authentication patterns. This
order prevents earlier decisions from imposing constraints that would undermine
a secure, scalable, and maintainable system, while leaving room for deliberate de-
viations - for example, shifting enforcement closer to a service when downstream
identity propagation makes it necessary.

Building on the outcome from the Authorization Patterns Recommendations, the
application of this principle leads to the following recommendations:

Decentralized Service-Level Authorization

When a service needs to communicate to downstream services, a stable,
canonical representation of the external subject is required so that each hop
can evaluate requests consistently. Applying the Protocol-Agnostic Identity
Propagation pattern at the edge supports the required issuance of a signed
subject structure - a special purpose Authorization Contract — which would
travel with the request across the call chain.

However, this pattern alone does not address all limitations of Decentral-
ized Service-Level Authorization: every downstream endpoint remains ac-
cessible to any authenticated subject. Additionally, endpoints intended to
be public would now require authentication. Combining this pattern with
Modern Edge-Level Authorization configured with a default-deny rule en-
sures that no endpoint is reachable unless explicitly permitted. Services
that need to expose endpoints can now define allow rules: purely public
endpoints can bypass authentication and the deny-all rule, while endpoints
requiring authentication can disable only the deny-all rule.

Endpoints that do not consume the canonical contract (e.g., health checks,
actuator APIs) require additional protection to prevent access from ma-
licious peers within the same network. This protection can be provided
through either the Kernel-Level Authentication pattern or the Service-Level

Proxy-Mediated Authentication pattern, both of which establish workload
identity for every inbound connection.

For services without downstream dependencies, identity propagation is
unnecessary, but maintaining a default-deny posture is still recommended.
This can be enforced through the same edge-level patterns or, alternatively,
by using Sidecar-Level Authorization - a localized form of Modern Edge-
Level Authorization - together with Service-Level Proxy-Mediated Authen-
tication to validate the caller and determine its subject for internal process-

mng.

Centralized Service-Level Authorization: The same approach as for Decen-
tralized Service-Level Authorization applies.

Modern Edge-Level Authorization:

If a service needs to communicate with downstream services, a stable sub-
ject representation across hops is required. In this case, it is necessary to
deviate from the result of the Authorization Patterns Recommendations
and fall back to Centralized Service-Level Authorization. This deviation is
valid because adding custom claims to, or changing the canonical subject
entirely to build the Authorization Contract (the default behavior of Modern
Edge-Level Authorization) would break downstream services that rely on
it for their own authorization. Using a centralized service-level approach
preserves consistency across the call chain while maintaining enforcement,
though modern edge-level authorization mechanisms are still used, but
limited to the bare minimum.

If no downstream calls are needed, the service can make use of Modern
Edge-Level Authorization to its full extent, and Edge-Level Authentication
is a natural fit to establish the external subject.

In either case, pairing with Kernel-Level Authentication or Service-
Level Proxy-Mediated Authentication ensures that workload identity is
established and inter-service communication - here between the edge and
the service - is protected.

Classic Edge-Level Authorization:

Since no service-local data is used, this pattern naturally combines with
Edge-Level Authentication and, as with other patterns, should be comple-
mented with Kernel-Level Authentication or Service-Level Proxy-Mediated
Authentication.

If there is a need to communicate with downstream services, Protocol
Agnostic Identity Propagation can be adopted as well.

However, as discussed in the Classic Edge-Level Authorization chapter, this
pattern has inherent socio-technical limitations. Therefore, Modern Edge-
Level Authorization is recommended instead.

When authentication decisions limit identity propagation

While service-level code-mediated or proxy-mediated authentication are
commonly used patterns to validate and establish the external subject,
these approaches practically not only restrict secure identity propagation
to token exchange-based only, which is actually designed to narrow the
authorization scope of a requester in third-party contexts and is not in-
tended for first-party use. They also tightly couple microservice code to
OAuth 2.0/0IDC, making multi-principal subjects difficult to implement in

practice, and entirely exclude multi-protocol scenarios.

6.5 Authentication, Identity
Propagation, and Authorization
Patterns in Practice

Building on the story of Alice and the blog platform and the example in Authoriza-
tion Patterns Recommendations, this chapter illustrates how the recommended
patterns can be implemented in practice.

6.5.1 Extended Access Requirements

Listing articles: Every user may view a list of articles, including the title,
publication date, author, and a short excerpt.

Reading articles: Access to the full content depends on the user’s subscription
tier and the number of full articles already read that day. If the quota is
exceeded or the user is anonymous, only an excerpt is shown. An exception
applies for authors: an authenticated user may always read articles they wrote.

Existing tiers are:

Free tier: up to 2 articles per day
Basic tier: up to 20 articles per day
Professional tier: unlimited

Writing articles: Only professional-tier users may write. Before publication,
an article must pass a harassment-content analysis. If rejected, the user is
notified and warned. Warnings appear in the user’s private profile.

6.5.2 Resulting Services

To support these requirements, the following services may be implemented:

Articles service - manages article storage and retrieval, as well as the number
of the read articles, with latter being cleared each night.

Subscription service - tracks user subscription tiers.

Analysis service - performs harassment analysis and stores warnings
Identity Provider (IdP) - handles registration, login, password reset, etc.
Payment provider - processes subscription fees.

Wiring application - assembles the UI and orchestrates calls to the other
services, using appropriate Ul integration patterns.

6.5.3 Mapping Requirements to Patterns

Listing articles Decentralized Service-Level Authorization

Reading a full article Modern Edge-Level Authorization to create the Au-
thorization Contract, enforced within the article service using Decentralized
Service-Level Authorization

Writing an article secure identity propagation from the edge through the ar-
ticle service to the analysis service via Protocol-Agnostic Identity Propagation
+ Centralized Service-Level Authorization

Reading warnings Decentralized Service-Level Authorization

Performing harassment analysis same pattern as above

Wiring application UI checks only whether the user is authenticated; Decen-
tralized Service-Level Authorization suffices

In all cases Modern Edge-Level Authorization protects endpoints so they
cannot accidentally become public.

To secure service-to-service traffic (article analysis, article = PDP, etc.)
Kernel-Level Authentication is used to ensure workload identity.

6.5.4 Possible OSS Stack

Implementing Kernel-Level Authentication typically requires Kubernetes.
Projects such as Cilium°, Istio~ (ambient mode), Linkerd , or other
service-mesh implementations provide strong workload identity and mutual
authentication for inter-service traffic.

For the IdP, social login via Google or Apple can cover registration and sign-in
flows. To completely stay with the OSS stack, projects like Keycloak ~, Zitadel *,
Ory Kratos ', or further can be used.

Modern Edge-Level Authorization and Protocol-Agnostic Identity Propagation
can be implemented with the help of open-source projects such as Heimdall -,
Oathkeeper ', Pomerium” ', or similar. In the walkthrough below I'll use heimdall
simply because I maintain it, and it’s the easiest way for me to illustrate the
patterns. If Istio serves as the service mesh, Istio Gateway can act as the ingress,
with heimdall integrated via Istio’s DestinationRule.

https://cilium.io/

https://istio.io/

https://linkerd.io/
https://www.keycloak.org/
https://zitadel.com/
https://github.com/ory/kratos
https://github.com/dadrus/heimdall
https://github.com/ory/oathkeeper
https://github.com/pomerium/pomerium

https://cilium.io/
https://istio.io/
https://linkerd.io/
https://www.keycloak.org/
https://zitadel.com/
https://github.com/ory/kratos
https://github.com/dadrus/heimdall
https://github.com/ory/oathkeeper
https://github.com/pomerium/pomerium

Because social login with Google requires an OIDC client functionality and heim-
dall (like many similar projects) does not implement it, an additional component
is needed. oauth2-proxy” is a well-known option for that purpose.

As the PDP, OPA, with OPAL acting as the control-plane component to distribute
policies and data to OPA instances, could be used. However, any other PDP and
matching control-plane solution could be used in the same way.

To ensure that authorization decisions always reflect the most recent state, an
event bus is required. Services publish relevant events, which are then consumed
by OPAL and distributed to the PDP instances.

In this example:

The articles service emits an event each time a user reads an article. The
event contains the heimdall-issued JWT together with the user’s updated “read
articles” counter.

The subscription service emits an event whenever a user changes their sub-
scription tier.

This event-driven approach lets OPA react almost instantly to changes when
evaluating policies. For reliable delivery, the event bus could be implemented with
Apache Kafka“", or lighter alternatives such as NATS"", RabbitMQ ", or similar.

6.5.5 Establishing a Canonical Subject and Enforcing a
Deny-by-Default Posture

To establish a canonical subject and enforce a deny-by-default posture with heim-
dall one would define a so-called default rule:

default_rule:
execute:
requires all requests "being authenticated" via google

https://github.com/oauth2-proxy/oauth2-proxy
https://kafka.apache.org/

https://nats.io

https://www.rabbitmq.com/

https://github.com/oauth2-proxy/oauth2-proxy
https://kafka.apache.org/
https://nats.io
https://www.rabbitmq.com/

- authenticator: google

denies all requests
- authorizer: deny_all_requests

creates the canonical representation of the external subject
- finalizer: jwt

on_error:
triggers authentication flow if the above google authenticator
fails and the request was sent by a browser
- error_handler: authenticate_with_google
if: >
type(Error) == authentication_error &&
Request.Header("Accept").contains("text/html")

Each step in the two pipelines above (execute and on_error) references mech-
anisms from a predefined catalogue. This catalogue is part of heimdall’s config-
uration and can be tailored to the needs of a particular system. If required, a
step can also customize the behavior of the chosen mechanism, as shown in the
next chapter. Other projects similar to heimdall, may require full configuration
for every step, or may implement a similar catalogue-based approach.

6.5.6 Service-Specific Rules and Authorization Contracts

Each service can now define deviations as needed. For example, the wiring ser-
vice would define a rule to expose public endpoints serving HTML and related
content and another one to allow authenticated and anonymous requests to yet

an additional endpoint:

apiVersion: heimdall.dadrus.github.com/vlalpha4
kind: RuleSet
metadata:
name: "wiring app rules"
spec:
rules:
allow authenticated or anonymous requests to the / route for GET requests
- id: wiring-app:main-page
match:
routes:
- path: /
methods: [GET]

execute:
- authenticator: google
- authenticator: anonymous
- authorizer: allow_all_requests
jwt finalizer which creates the canonical representation of the
external subject and the error handler are reused from the default
rule

allow all GET requests to any css, js, or ico resources under / route
- id: wiring-app:public-resources
match:
routes:
- path: /:resources
path_params:
- name: resources
type: glob
value: "{*.css,*.js,*.ico}"
methods: [GET]
execute:
- authenticator: anonymous
- authorizer: allow_all_requests
jwt finalizer which creates the canonical representation of the
external subject and the error handler are reused from the default
rule

The code used to render the html page behind the / route can use any standard
JOSE library and the public key from heimdall’s .well-known/jwks endpoint to
validate the issued JWT. This is a very simple application of the Decentralized
Service-Level Authorization pattern. All services using Protocol-Agnostic Identity
Propagation will see the same JWT structure and perform identical verification.
And in case of the implementation to write articles, the articles service can simply
pass the received JWT downstream to the analysis service along with the article
to be verified.

Reading articles makes use of a wider range of Modern Edge-Level Authorization
capabilities and establishes an own Authorization Contract by extending the JWT
created by heimdall with some custom claims:

apiVersion: heimdall.dadrus.github.com/vlalpha4
kind: RuleSet
metadata:
name: "articles service rules"
spec:
rules:

- id: articles-service:read-article
match:
routes:
- path: /articles/:article_id
methods: [GET]
execute:
- authenticator: google
- authenticator: anonymous
- authorizer: allow_all_requests
since the actual enforcement is done in the implementation of the
articles service a contextualizer is used here instead of an
authorizer
- contextualizer: opa
config:
values:
policy: articles/allow
action: read
the Subject object is created by the executed authenticator
subject: "{{ .Subject.ID }}"
article_id captures the value from the request path defined in
the match expression above
object: "{{ .Request.URL.Captures.article_id }}"
extend the JWT configured in the default rule with custom claims. A
complete rewrite is also possible instead.
finalizer: jwt
config:
values:
requested_article: "{{ .Request.URL.Captures.article_id }}"
allowed_representation: "{{ .Outputs.opa.result }}"

H* H

other rules, e.g. for requests to write an article

With that in place the implementation of the read article functionality can make
use of these custom claims after verifying the JWT received along the request
without the need to call OPA directly.

The article write functionality verifies the JWT issued by heimdall as already
described for the other services in this example, calls OPA to understand whether
writing of articles is allowed and enforces it. If allowed, the corresponding Ul
representation is rendered to the user. When ready, the user submits the article,
resulting in the same checks, followed by a call from the article service to the
analysis service for the harassment analysis. Since that check can take a while,
the user is redirected to some page explaining the progress. The corresponding
rule for heimdall would look similar to the wiring-app:main-page shown at the

beginning of this chapter, but without a fallback to the anonymous authentica-
tor.

7 Final Words

This concludes the primer, but the work of applying these patterns and principles
is just the beginning. You now have a framework for making informed decisions
about authorization, identity propagation, and authentication - a practical toolkit
for real-world distributed systems.

Remember: there’s no one-size-fits-all solution. Every system comes with unique
requirements, constraints, and trade-offs. The patterns and recommendations
shared here are meant to guide you, not dictate exact implementations. Treat
them as a foundation on which to experiment, adapt, and refine your own ap-
proaches.

I hope this book inspires you to think critically about security architecture and
empowers you to design systems that are not just functional, but secure, scalable,

and maintainable.

8 About us

Q

INNOQ is a technology consulting company. Honest consulting, innovative think-
ing, and a passion for software development means: We deliver successful soft-
ware solutions, infrastructure and products.

We specialize in the following areas:

Strategy and Technology Consulting
Software Architecture and Development
Data & Al

IT Security

Development of Digital Products

Digital Platforms and Infrastructures
Knowledge Transfer, Coaching and Trainings

With around 150 employees across offices in Germany and Switzerland, we sup-
port companies and organizations in designing and implementing complex initia-

tives and in improving existing software systems.

We are actively involved in open-source projects and the iSAQB® e.V., and we
share our knowledge and experience at conferences and meetups, as well as
through numerous books and professional publications.

Visit us at www.innoq.com

About the author

Dimitrij Drus

Dimitrij is a Senior Consultant at INNOQ with
many years of experience in the architecture and
security of distributed and embedded systems. His
engagements in customer projects typically include
supporting and mentoring teams in the practical

implementation of the security and architectural
concerns that matter, placing particular emphasis
on helping development teams embrace security and
removing barriers so that it becomes an integral part
of good software quality rather than a perceived
obstacle. Beyond client work, Dimitrij is active in
the open-source community — including heimdall,
an identity-aware proxy — and enjoys sharing his
knowledge through training, blog posts, and confer-
ence talks.

Dimitrij Drus set out to rethink the OWASP Microservice Security
Cheat Sheet - and shared his insights in a widely discussed blog series.
Here's what others said about it:

"To all you out there interested in application security and
microservices enthusiasts! If you are passionate about building
secure distributed systems, I've got an interesting blog series
for you.

Over the past couple of weeks | dived deep into a 7-part blog series

by Dimitrij Drus on updating the OWASP Microservice Security Cheat Sheet.
In my opinion, Dimitrij's work here is nothing short of brilliant.

He is one of the most knowledgeable security experts | know and has

taken tremendous effort to write up and reconsider a lot of the current
state of microservice security.

Kicking off with sharp critique of the current sheet's gaps
(shallow patterns, contradictions, outdated advice sometimes
fueling risks like "accept-by-default”), he proposes to rethink
it with the following key pillars in mind:

« NIST-based core concepts (subjects, policies,

first/third-party contexts). Authentication patterns
(service/edge/kernel-level, Zero Trust trade-offs).

« Identity propagation (methods and trade-offs)

« Authorization patterns (decentralized to modern
edge, PDP options).

« Decision dimensions (policy/data traits, distribution,
performance).

« Practical recs (e.g., blog platform with OPA/Heimdall/K8s),
governance, and Zero Trust integration.”

Jan Larwig, Maintainer of OAuth2 Proxy

This primer compiles the full series - clearly structured and refined.
For software architects, developers, and anyone interested in practical
approaches to securing distributed systems.

innoq.com

	Preface
	Relation to the OWASP Cheat Sheets Project
	Navigating This Primer
	How to Read This Primer
	Acknowledgments
	Some Last Words

	1 Core Concepts
	1.1 Authorization Reference Architecture
	1.2 A Story to Ground the Concepts
	1.3 Policy Representations and Lifecycle
	1.4 First-Party vs. Third-Party
	1.5 On Subjects, Principals and Identities

	2 Authentication Patterns
	2.1 Introduction to Authentication Patterns
	2.2 Service-Level Embedded Authentication
	2.3 Service-Level Code-Mediated Authentication
	2.4 Service-Level Proxy-Mediated Authentication
	2.5 Edge-Level Authentication
	2.6 Kernel-Level Authentication
	2.7 Operational and Security Considerations

	3 Identity Propagation Patterns
	3.1 External Identity Propagation
	3.2 Simple Service-Level Identity Forwarding
	3.3 Token Exchange-Based Identity Propagation
	3.4 Protocol-Agnostic Identity Propagation
	3.5 On Privacy By-Design

	4 Authorization Patterns
	4.1 Decentralized Service-Level Authorization
	4.2 Centralized Service-Level Authorization
	4.3 Edge-Level Authorization (Classic)
	4.4 Edge-Level Authorization (Modern)
	4.5 Sidecar-Level Authorization
	4.6 PDP Deployment & Integration Options

	5 Decision Dimensions for Authorization Patterns
	5.1 Policy Characteristics
	5.2 Policy Distribution Strategies
	5.3 Data Characteristics
	5.4 Policy Input Data Distribution Strategies
	5.5 Policy Output Data Handling Patterns
	5.6 Performance
	5.7 What's next

	6 Practical Considerations & Recommendations
	6.1 Authorization Patterns Recommendations
	6.2 Data and Policy Distribution in Practice
	6.3 Policy Input Data Governance
	6.4 Interplay Between Authorization, Authentication, Identity Propagation Patterns, and Zero Trust
	6.5 Authentication, Identity Propagation, and Authorization Patterns in Practice

	7 Final Words
	8 About us
	About the author

