INNOC e

Modern
4 Domain-driven

. S
Design '
From the business model

to systems - agile and
socio-technical

i

Michael Plod

Modern Domain-driven Design

Michael Plod

innoQ Deutschland GmbH
KrischerstraBe 100 - 40789 Monheim am Rhein - Germany
Phone +49 2173 33660 - www.INNOQ.com

Layout: Tammo van Lessen with XglATEX
Design: Murat Akgoz
Typesetting: André Deuerling

Modern Domain-driven Design - From the business model to
systems - agile and socio-technical

Published by innoQ Deutschland GmbH

1st edition - January 2026

Copyright © 2026 Michael Plsd

Contents

1 Introduction

1.1
1.2
1.3

Why a comprehensive overview?o..s.
Overview of the contents of the primer

Purpose of thisprimer ...

2 DDD as a way of working and a mindset

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8

Introduction.ot
Domain-Driven Design as a way of working...............
Attitude: The mindset behind Domain-Driven Design
The relationship toagility ...t
Practical implications ...
Challenges in its practical application
Opportunitiesand added value.............................

CoNClUSION .o

3 Guiding approaches in the DDD environment

3.1
3.2

3.3
3.4
3.5

Modeling as a cycle: The Model Exploration Whirlpool....

Getting started step by step: The DDD Starter Model-
ING ProCess . it e e

Whirlpool and Starter Process in interaction..............
Outlook: Our point of reference in the rest of the primer.

CONCIUSION oot

4 Collaborative Modeling

4.1
4.2

4.3
4.4
4.5

Introduction & Principlescooiiiiiiiiiii i

Align phase: Business Model Canvas and Value Propo-
SItioN CaANVAS ...t

Discover Phase: Big Picture EventStorming
Discover Phase: Domain Storytelling

CoNClUSION .ot

5 Strategic Domain-Driven Design
51 Problem- and Solutionspace...............oooiiiiiiL
5.2 Domains and Subdomains ...t
5.3 Strategic Classification ...
5.4 Bounded Contexts........coouiiuiiniiiiiniiiiiiiiiiiaan
5.5 Working with the Bounded Context Design Canvas
5.6 Socio-technicalalignment

5.7 Conclusiono

6 Tactical Domain-Driven Design
6.1 Tactical Patterns ... i
6.2 Architectural Patterns ... i
6.3 Deployment Optionsooviiiiiiiniiiiiiiiiiiiieieiaanns

6.4 Design-Level EventStorming - From the model to the
implementation.........cooiiiii i

6.5 Summary andoutlook

7 Conclusion: Do's and Don'ts in Domain-Driven Design

71 Business first, technology later................cooiiiiin.
7.2 Take the ubiquitous language seriously
7.3 Design models in a collaborative way
7.4 Draw small, coherent boundaries
7.5 Think and learniteratively ...,
7.6 Designing technical resilience.................oiiiil
7.7 Adapt architectures to the problem
7.8 Make responsibility visible i
7.9 Maintain pragmatism
2 (O ST o'oY o o o 1Y/ PP

8 Sources and references
9 Aboutus

About the author

1 Introduction

Domain-Driven Design (DDD) has been a distinctive approach to designing com-
plex software systems since the publication of Eric Evans’ book in 2003. Since
then a lot has changed, both within the DDD community as well as in related
disciplines such as agile product development, organizational design, and modern
software architecture.

This primer is intended for anyone working in this field:

Software developers and architects looking for practical patterns for robust
systems.

Agile coaches, product owners, and business analysts who want to under-
stand how DDD can be used as a bridge between business and technology.
Engineering leads and executives who operate at the interface between or-
ganization, architecture, and strategy.

1.1 Why a comprehensive overview?

Inrecent years, new methods and approaches have emerged that complement and
extend the original core of Domain-Driven Design:

Collaborative modeling techniques such as EventStorming, Domain Story-
telling, and Event Modeling have demonstrated the value of bridging the gap
between business and technology.

Strategic DDD has gained massive importance and has been taken up by
tools such as the Bounded Context Design Canvas and concepts from Team
Topologies.

Tactical DDD is now thought of in a broader architectural context, from classic
monoliths to microservices to event-driven architectures and cloud-native

systems.

At the same time, the world of work has changed: Agile methods have become
mainstream, product organizations are working more in a cross-functional man-
ner, and topics such as socio-technical architectures and fast flow principles are
gaining in significance.

1.2 Overview of the contents of the
primer

This primer is divided into several parts, each of which highlights different facets
of modern Domain-Driven Design:

DDD as a way of working and an attitude An introduction to the central ideas
of Domain-Driven Design. Throughout this chapter, it becomes clear that DDD is
not just a technical pattern set, but a way of thinking and working that correlates
strongly with the principles of agile development: close collaboration, iterative
approaches, and a focus on value creation. Misconceptions are clarified and initial
guidelines for use in modern product and organizational environments are set.

Guiding approaches in the DDD environment Teams need guidance to move
from an attitude and mindset to concrete practices This chapter shows how DDD
becomes tangible through two complementary approaches: Eric Evans’ Model
Exploration Whirlpool illustrates the iterative nature of modeling as a learning
process, while the DDD Crew’s DDD Starter Modeling Process provides a prag-
matic step-by-step framework for getting started. Together, they help to structure
uncertainty and pave the way for the following methods in the primer.

Collaborative Modeling This section deals with methods for people with domain
and software engineering knowledge to work together on a model. EventStorming,
Domain Storytelling, and Event Modeling help to create a shared understanding
and make implicit knowledge visible. These techniques promote open communi-
cation, facilitate requirements engineering in agile environments, and form the
basis for viable models.

Strategic DDD The focus here is on structuring complex domains. Concepts such
as bounded contexts, subdomains, and context maps help to clarify responsibili-
ties and interfaces. Supplemented by tools such as the Bounded Context Design
Canvas or Core Domain Charts and concepts from Team Topologies, it shows how
to design technical and organizational boundaries in such a way that value streams
are optimally supported.

Tactical DDD This part is dedicated to the specific patterns and architectural
possibilities that are derived from the technical models. Aggregates, Value Objects,

Entities, Repositories, and Domain Events provide the basic building blocks for
robust solutions. This is complemented by architectural approaches ranging from
monoliths to microservices to event-driven architectures, as well as patterns such
as Ports & Adapters, CQRS, and Event Sourcing.

Conclusion: Do’s and Don’ts in Domain-Driven Design Domain-Driven Design
is not a dogma, but rather an attitude that shapes thinking, collaboration, and
architectural decisions. Nevertheless, there are typical pitfalls that almost every
team experiences at some point, as well as typical success factors that determine
whether a project will succeed. This concluding chapter summarizes the most
important do’s and don’ts. Not as a checklist, but as a guide for practical applica-

tion.

1.3 Purpose of this primer

This primer is intended to provide a compact but comprehensive overview of
modern Domain-Driven Design:

It explains the multitude of concepts and methods.

It shows how DDD is used in organizations today, not only in code, but also in
collaborative work.

It highlights pitfalls and misunderstandings that occur repeatedly in practice.

My goal is not to shed light on every detail. Rather, I want to provide guidance and
clarify how Domain-Driven Design has evolved in recent years. For those who
want to dig deeper, there are references to further resources at the end of the

primer.

2 DDD as a way of working and a
mindset

2.1 Introduction

Domain-Driven Design (DDD) is often perceived as a collection of methods,
patterns, and techniques. In public discussion, the focus often tends to be on
artifacts such as Bounded Contexts or Aggregates. Other architectural patterns such
as Hexagonal Architecture or Microservices are often mentioned in the same breath,
but these are not DDD-specific artifacts per se, rather related approaches that
can be combined well with DDD. The real core of Domain-Driven Design does
not lie primarily in these artifacts, but in the path that leads to them: How do
I identify Bounded Contexts? How do I slice domains? Why do I choose a particular
architectural pattern, or consciously decide against it? It is precisely this process of
understanding, discussing, and deciding that defines Domain-Driven Design. It’s
about the journey, not the destination. This chapter shows that DDD is not just
a toolbox for architects and developers, but a way of working and an attitude
that shapes collaboration, ways of thinking, and decision-making processes. It
also highlights the close connection to agile principles.

2.2 Domain-Driven Design as a way of
working

DDD is not a methodology that you introduce once and then apply like a rigid set
of rules. Rather, it is a continuous practice that focuses on understanding the
domain and making that understanding the foundation of technical design. Key
features of this way of working are:

Iterative approach: Knowledge about the domain grows over time. DDD em-
phasizes that models and implementations mature together with this under-
standing.

Close collaboration: Subject matter experts and developers do not work sep-
arately, but in an ongoing joint dialogue.

Experimentation and learning: Hypotheses about the domain are tested,
adapted, or discarded early on. This also involves transforming the implicit
mental models of those involved into explicit, shared knowledge. Alberto
Brandolini, the inventor of EventStorming, put it aptly by asking: What ac-
tually goes into production — the knowledge of the domain experts or the
hypotheses and assumptions that exist in the minds of the developers about
thisknowledge? It is precisely this process of visualization and comparison that
forms the core of learning in the DDD context. These aspects align DDD with
agile values as described in the Agile Manifesto: “Individuals and interactions
over processes and tools. Working software over comprehensive documenta-
tion. Customer collaboration over contract negotiation. Responding to change
over following a plan”

2.3 Attitude: The mindset behind
Domain-Driven Design

In addition to the way of working, DDD emphasizes a particular attitude that af-
fects several dimensions: 1. Respect for domain expertise: DDD puts the domain
at the center. It is not about using technology for its own sake, but about precisely
understanding and modeling the business and application logic. 2. Ubiquitous
language: The language of the domain becomes the language of implementation.
This requires openness, empathy, and the willingness to build bridges between dif-
ferent disciplines. 3. Long-term value orientation: Instead of focusing on short-
term optimizations, DDD pursues the goal of developing sustainable models and
architectures. 4. Acceptance of complexity: DDD is not a tool for eliminating
complexity, but for making it visible and manageable. 5. Continuous learning:
DDD thrives on the fact that models cannot be perfect from the very beginning.
Iteration 1 can therefore often only claim to have been “always very diligent.” A
truly sustainable model can only be achieved through continuous learning, reflec-
tion, and joint development. This attitude closely links DDD with agile principles,
in which iterative approaches and continuous improvement are crucial.

2.4 The relationship to agility

DDD cannot be viewed in isolation from agile principles. Rather, both approaches
reinforce each other. There are numerous similarities to DDD, especially in the
Agile Manifesto:

Business people and developers must work together daily throughout the
project: This principle is specifically embodied in DDD, where domain experts
and developers work together to design models and continuously adapt them.
Ubiquitous Language and collaborative workshops are direct manifestations
of this principle.

Feedback cycles: Agile methods rely on short iterations in which feedback is
obtained. DDD concretizes this approach by demanding feedback not only at
the technical level, but also at the domain model level.

Collaboration: Agility emphasizes cross-functional teams. DDD makes this
idea explicit through all the ideas evolving around knowledge cruching and
collaborative modeling approaches.

Adaptability: Agility aims to be able to respond to change. DDD offers mech-
anisms such as Bounded Contexts and Context Maps to incorporate these
changes into the architecture in a structured way.

2.5 Practical implications

DDD as a way of working and an attitude manifests itself in numerous facets in
everyday life:

2.5.1 Workshops and collaborative modeling

Formats such as Event Storming or Domain Storytelling illustrate that DDD
relies heavily on visual, collaborative, and interactive methods. This results in
models that are understandable to both business and technical experts.

2.5.2 Architectural decisions

The DDD approach means that architecture is not created in isolation on the
“drawing board,” but grows out of the domain-specific knowledge. Decisions
such as the division into Bounded Contexts are the result of domain-specific
boundaries.

2.5.3 Prioritization and value creation

DDD sharpens the focus on which parts of a domain are strategically rele-
vant. Instead of treating everything equally, DDD distinguishes between core
(sub)domains, supporting subdomains, and generic subdomains. Investment and
staffing decisions are derived from this.

2.5.4 Continuous refactoring

The mindset behind DDD accepts that models are never perfect. Instead, the aim
is to continuously improve them as new knowledge becomes available.

2.6 Challenges in its practical application

Embracing DDD as an attitude is no trivial matter. One of the biggest hurdles
is silo thinking: when departments and IT operate in strict isolation from one
another, there is no basis for a common language and the necessary ongoing
dialogue.

Equally challenging is the ever-present time pressure. In projects with tight
deadlines, careful modeling is often considered a “luxury,” even though it is
crucial for the long-term quality and sustainability of the systems. In addition,
there are numerous misconceptions about Domain-Driven Design in the field.
Dogmatic views on Domain-Driven Design are often encountered. For example,
some believe that seriously implementing DDD inevitably leads to a microservice
architecture. Others argue that DDD requires a hexagonal architecture or auto-
matically leads to event-driven systems. These views are simplistic and incorrect.
DDD does not prescribe a specific target architecture, but rather provides thinking

tools and practices for making the right decisions for a specific domain and its
context. This is precisely where the real strength of DDD lies: it is about the path
to knowledge and conscious choice, not about ready-made dogmatic solutions.

Another point that is often overlooked is the scope of adoption of domain-
driven design. In its fully developed form, DDD is time-consuming and therefore
also cost-intensive. It would be inefficient to apply this approach equally to every
subdomain or every part of a system. Instead, DDD clearly states that the methods
and practices are most useful when it comes to core domains: those areas that are
crucial for strategic, economic, or business success in the medium to long term. In
supporting or generic subdomains, however, it is often sufficient to choose more
simple approaches.

2.7 Opportunities and added value

The opportunities and added value of Domain-Driven Design lie less in general
buzzwords such as communication or sustainability and more in the very con-
crete effects that arise from the close connection between domain expertise and

technical implementation.

A key added value is more maintainable systems. Because the structure of the
code arises directly from domain thinking, the software becomes clearer, more
comprehensible, and thus more robust. Functional changes can be more easily
transferred to the technical world without causing fractures. This reduces the risk
of systems becoming unmanageable. Another major advantage lies in alignment:
DDD promotes the alignment of functional boundaries with the vertical modules
of the software architecture. Bounded Contexts thus become more than just
an architectural construct; they also help to draw clear deployment boundaries
and clearly define responsibilities. This alignment can also be transferred to
organizational aspects. If we consider the ideas from Team Topologies, for example,
Bounded Contexts are an excellent starting point for tailoring teams. This results
in teams whose responsibilities correspond to the functional boundaries and who
can work autonomously.

DDD not only creates technically clean architectures, but also helps to harmonize
organization, architecture, and domain. This combination of technology and or-
ganization is a specific and strategically relevant added value that sets DDD apart

from many other approaches.

2.8 Conclusion

DDD as a way of working and an attitude is much more than a collection of
methods and patterns. It combines technical craftsmanship with an attitude that
focuses on collaboration, respect for the domain, and conscious engagement
with complexity. In combination with agile principles and the values of the Agile
Manifesto, this creates a powerful foundation for designing complex software

systems in a sustainable way.

3 Guiding approaches in the DDD
environment

In the first part of this primer, we saw that Domain-Driven Design is much more
than a toolbox of patterns and artifacts. It is an approach that focuses on collabo-
ration, respect for expertise, and continuous learning. But this immediately raises
a specific question for many teams: How exactly should we get started? This is where
guiding approaches for domain modeling come into play. They help to make the
abstract attitude tangible and translate it into concrete first steps. It is important
to note that DDD does not prescribe a rigid methodology that must be followed
from A to Z. Rather, it is about showing ways that give teams orientation without
forcing them into a tight corset. In this chapter, we present two approaches that
have gained particular significance in the community: Eric Evans’ Model Explo-
ration Whirlpool and the DDD Crew’s DDD Starter Modeling Process. They
are helpful in different ways: The whirlpool describes the thinking and learning
movements that naturally arise during modeling, while the starter process offers
a pragmatic collection of specific activities that is particularly suitable for getting
started in a hands-on manner. Together, they provide a valuable reference to apply
Domain-Driven Design in your day-to-day work.

3.1 Modeling as a cycle: The Model
Exploration Whirlpool

Eric Evans, the founder of Domain-Driven Design, recognized early on that mod-
eling domain expertise is not a linear process. Gathering requirements, designing
a model, and then implementing it without change, that’s not how it works in
reality. Instead, teams move in circles, refining ideas, discarding hypotheses, and
learning to better understand the domain step by step. To describe this process,
Evans coined the metaphor of the Model Exploration Whirlpool. The whirlpool
represents a constant cycle between different activities: conducting technical
discussions, setting up models, implementing prototypes, redrawing boundaries,
and testing hypotheses. There is no fixed beginning and no definitive end. The

current of the whirlpool repeatedly pulls the participants back in and ensures that
the model matures a little more with each turn.

MODEL EXPLORATION

Whirlpool

- Tell a story: be concrete & specific
- Walk through and flesh out

| - Refocus on hard part
- Refocus on core domain

Harvest &
Document

- Collect reference scenarios
- Capture bits of model, with rationale
- Leave most ideas behind

- Experiment in code
- Refine language

- Add rigor

- Code cheap prototypes

- Script a scenario

- Try, then scrap, code changes

- Propose a model

- Walk through scenarios as events & states
- Explore language

- Add rigor

- Make mistakes

domainlanguage.com/ddd/whirpool

(Image source: https://domainlanguage.com/ddd/whirlpool)
This metaphor illustrates several key insights:

Iterative learning is inevitable. A model that is “finished” on the first attempt
does not exist in practice.

Expertise and technology are interdependent. Insights from implementa-
tion flow back into the model, just as technical discussions have a direct impact
on the code.

Uncertainty is part of the process. Instead of being discouraged by vague
or contradictory requirements, the whirlpool embraces this ambiguity as the
norm.

For teams, the Model Exploration Whirlpool is an invitation to cultivate serenity
in dealing with complexity. It conveys the conviction that it is not about finding

the perfect solution from the very beginning, but that learning and adapting are
integral parts of domain modeling.

3.2 Getting started step by step: The
DDD Starter Modeling Process

While the whirlpool provides a helpful metaphor, teams often need something
more tangible in practice. Especially when getting started, it isimportant to have a
common guideline that provides orientation. This is where the DDD Crew’s DDD
Starter Modeling Process comes in. This process offers a lightweight sequence
of steps that allows even less experienced teams to organize their first modeling
sessions. It should not be understood as a strict set of procedural steps, but rather
as a pragmatic collection of recommendations that have proven their worth in
many projects.

Domain-Driven Design starter modeling process

A starter process for beginners, not a rigid best-practice. DDD is continuous, evolutionary and iterative design.

Strategize
. Business oo
differentiating
core-domains

Align

. Business model
and user needs

Organize
Your teams around
bounded contexts

Discover
e d %o The domain visually
° & collaboratively

Define

Roles &

responsibilities for .
bounded contexts

.
o2 Decompose
3 The domain into
. sub-domains

Code
Your bounded

context with tactical a

patterns

Sub-domains to form
aloosely coupled
architecture

[) Connect
o

Source:

(Image source: https://github.com/ddd-crew/ddd-starter-modelling-process)

Typical elements of this process are:

Create a common understanding of the domain. This often takes the form
of an exploration workshop, using EventStorming or similar techniques. The
goal is to make implicit knowledge visible and establish a common language.

Identifying initial subdomains and bounded contexts. Instead of capturing
the entire complexity at once, subdomains are identified and given responsi-
bilities.

Developing the ubiquitous language. Terms that arise in discussions are
clarified and used consistently in the models and in the code.

Refine step by step. The process encourages starting with simple visualiza-
tions or prototypes and expanding them as needed.

What is particularly valuable about the Starter Modeling Process is its pragma-
tism: it is clear enough to provide guidance, but open enough to be adapted to
different contexts. Teams that have no previous experience with DDD can follow
it and achieve initial success without knowing in detail what the entire puzzle will
look like in the end.

3.3 Whirlpool and Starter Process in
interaction

At first glance, Whirlpool and Starter Process might seem like opposites: one
describes an open, nonlinear circle, the other a specific collection of activities. In
reality, however, they complement each other perfectly. The Model Exploration
Whirlpool provides the philosophy: modeling is not a linear process, but an
iterative learning game that is never complete. It sensitizes teams to the fact that
setbacks and loops are not mistakes, but the norm. The DDD Starter Modeling
Process provides the practice: it gives teams a concrete roadmap to guide them,
especially in the early sessions when uncertainty is high. Taken together, this
creates a dual frame of reference: the whirlpool explains why Domain-Driven
Design works the way it does. The Starter Process shows how to take action in
everyday life.

3.4 Outlook: Our point of reference in the
rest of the primer

In the rest of this primer - in the chapters on Collaborative Modeling, Strategic
DDD, and Tactical DDD - we will refer to the DDD Starter Modeling Process.
It serves as a common thread because it is well suited to putting methods such
as EventStorming, Domain Storytelling, and Context Mapping into a comprehen-
sible sequence. At the same time, the Model Exploration Whirlpool remains an
important background idea. No matter which technique or tool is used, thinking
in iterative learning cycles is the foundation for DDD to be impactful.

3.5 Conclusion

In this chapter, we bridged the gap between the fundamentals and specific prac-
tices. We learned about two approaches that offer different but complemen-
tary perspectives. The Model Exploration Whirlpool reminds us that DDD is an
ongoing learning process. The Starter Modeling Process gives us a manageable
approach to getting started with this process. Together, they form the frame of
reference with which we will continue to work in the coming chapters, whether in
collaborative modeling, strategic considerations, or tactical design. Anyone who
wants to understand and apply Domain-Driven Design needs both: confidence in
the whirlpool of learning and the courage to take clear first steps.

4 Collaborative Modeling

In the first part of this primer, you saw that Domain-Driven Design is not just
a collection of methods, but a way of working and a mindset that focuses on
collaboration, respect for domain expertise, and continuous learning. This is
where the comparatively young discipline of collaborative modeling comes in: it
makes these principles tangible in practice by being highly interactive and having
no significant barriers to entry.

4.1 Introduction & Principles

Collaborative modeling describes a range of methods in which people from dif-
ferent backgrounds, such as subject matter experts, developers, product owners,
agile coaches, or business analysts, work together to develop domain models
instead of working on them in silos and then “throwing them over the fence”
in the form of documents. The underlying idea is to make implicit knowledge
visible and establish a common language. This allows misunderstandings to be
identified and reduced at an early stage, risks to be minimized, and the foundation
for sustainable systems to be laid.

The key principles are:

Together instead of divided: Models are not created through handovers,
but through direct collaboration. All participants, from domain experts to
developers, work together to gain a consistent and clear understanding of the
problem.

Visual rather than textual: Simple visualizations on whiteboards, sticky notes,
or digital boards make knowledge tangible and verifiable. This facilitates com-
munication, makes complex relationships visible, and encourages active par-
ticipation by all team members.

Exploratory instead of deterministic: Modeling is an ongoing learning pro-
cess, a conversation. Hypotheses can be tested and discarded. The model is
not perfected in one single stage, but evolves in cycles. Through continuous
feedback and adjustments, the model is gradually improved and adapted to
new insights.

Focus on value creation: Modeling is not an end in itself, but consistently fo-
cuses on solving a specific problem and creating measurable business value. It
is not about documenting every detail, but about identifying the key elements
for product goals, value propositions and user needs.

Collaborative modeling could be described as moderated business analysis for
agile environments. Instead of writing down requirements in large documents,
we create lively models in short iteration cycles that are endorsed and understood
by everyone involved. This makes the methods relevant not only for software
architects, but also for roles such as agile coaches, product owners, and require-
ments engineers.

In the following, we will look at selected methods in the context of the “Align”
and “Discover” phases of the DDD Starter Modeling Processes mentioned in
the previous chapter.

4.2 Align phase: Business Model Canvas
and Value Proposition Canvas

The first phase of the DDD Starter Modeling Process is called Align. Before
exploring a domain in depth, the overarching goals must be clear: Why does our
product exist? Which customers are we addressing? What value do we want to create?

4.2.1 Business Model Canvas

The Business Model Canvas (BMC) is a strategic alignment tool that helps teams
develop a shared understanding of the overall business context before diving
into domain modeling. On a single page, it captures key aspects such as customer
segments, value propositions, channels, revenue streams, and cost structures. In
the context of Domain-Driven Design, the BMC does not describe the domain
itself, nor does it provide direct input for identifying subdomains or Bounded Con-
texts. Instead, it establishes a common business framing: why an organization or
a product exists, how it intends to create value, and which economic assumptions
shape its decisions. This shared framing is valuable because it aligns stakeholders
before more detailed, domain-centric exploration begins.

Facilitation tips:

Work iteratively: start with a coarse, incomplete canvas and refine it over time.
Focus on shared understanding rather than correctness or completeness.
Explicitly mark assumptions, uncertainties, and open questions using colors
or symbols.

From a DDD perspective, the Business Model Canvas serves as context-setting
input, not as a modeling artifact. It helps teams agree on the broader business
narrative, creating a stable starting point for subsequent domain exploration and
collaborative modeling.

4.2.2 Value Proposition Canvas

The Value Proposition Canvas (VPC) zooms in on one specific aspect of the
Business Model Canvas: the relationship between a customer segment and a value
proposition. It explores questions such as: Which jobs do customers try to get
done? Which pains do they experience? Which gains do they expect — and how
does a product or service aim to address them? In contrast to domain-modeling
techniques, the VPC does not describe domain behavior or internal business rules.
Its value in a Domain-Driven Design context lies in sharpening the external view

on value creation.

Facilitation tips:

Start with customers and their needs, not with solution ideas.

Use concrete examples to avoid abstraction.

Encourage multiple perspectives — product, business, and technology often
highlight different aspects of value From a DDD perspective, the VPC helps
inform strategic prioritization, not modeling decisions. It supports discussions
about where an organization differentiates through customer value and where
commodity solutions may be sufficient. These insights later feed into strategic
decisions such as identitying Core, Supporting, and Generic domains, which we
will revisit in the Strategize section of the chapter on Strategic Domain-Driven
Design.

4.3 Discover Phase: Big Picture
EventStorming

Once the goals and value propositions have been clarified, the Discover phase is
about understanding the domain in detail. One of the most popular methods for
this is Big Picture EventStorming.

4.3.1 Description

EventStorming is based on the idea that technical expertise can best be described
through domain events: things that happen in reality and are relevant to the busi-
ness (“Customer placed an order”). These events are arranged chronologically
and thematically as sticky notes on a long paper or digital whiteboard. This visual,
collaborative approach quickly creates a shared picture of the domain.

4.3.2 Participants

Big Picture EventStorming is only useful if all relevant perspectives are repre-
sented:

Domain experts who know the day-to-day business.

Developers and architects who consider technical feasibility and integration.
Product owners, business analysts, and agile coaches who ensure prioritization,
value creation, and moderation.

Representatives of adjacent departments or external partners if their systems
or processes are directly involved.

The goal is to gain as complete a picture of the value streams as possible, thereby
overcoming silo thinking.

4.3.3 Elements

Big Picture Event Storming uses a few central element types on sticky notes,
which are distinguished by colors and symbols:

Element Color

Description

Domain orange
Events

Commands blue
Actors / yellow
Roles

External pink
Systems

Hot Spots red

domain-relevant events that change the state

actions that trigger an event

people or systems that execute commands

systems or organizations outside one’s own sphere of
influence

UUncertainties, contradictions, or conflicts that need
to be investigated

4.3.4 Phases of the process

A Big Picture Event Storming typically follows several phases:

1. Chaotic Exploration - All participants write down domain events on sticky

notes. The focus is on quantity, not order. The goal is to bring implicit knowl-

edge to the table.

2. Enforcing the Timeline - The events are placed in chronological order. This

is where initial discussions about sequences, dependencies, and process logic

take place.

3. Adding Structure - Pivotal events are marked, swimlanes are introduced, and

external systems are added. The model gains structure and depth. Pivotal

events play a special role in Big Picture Event Storming. They mark particu-

larly important domain events in the timeline that fundamentally change the

state of the domain.

4. Identifying hot spots - Open questions and conflicts are made visible. These
points are particularly valuable because they mark risks or opportunities for

innovation.

5. Refinement & Exploration - Depending on the objective, additional ele-
ments such as commands or user roles can be added. This develops the model
into a basis for bounded contexts and architecture discussions.

4.3.5 Facilitation tips

As a facilitator, you should first ensure that you have a large physical or digital
space because lack of space is the biggest enemy. Right at the start, it is important
to explain that this is not about “right or wrong,” but about exploration. Make sure
that everyone involved actively contributes by specifically involving quieter roles.
Colors help you to clearly distinguish between the different elements. Finally, it is
important to keep the pace high: details can always be refined later; what is crucial
is the shared momentum in the workshop.

4.3.6 Benefits

EventStorming is particularly suitable for the Discover phase because it quickly
adds depth and reveals implicit knowledge. Teams recognize process breaks,
contradictions, and potential for improvement. At the same time, it creates a basic
foundation from which bounded contexts, ubiquitous language, and technical
models can later be derived.

4.4 Discover Phase: Domain Storytelling

Once Big Picture EventStorming has revealed a broad picture of the domain,
Domain Storytelling allows for a deeper dive into specific processes. The method
focuses on actors and their interactions and reveals implicit ways of working
through storytelling. This is particularly valuable for many teams, as stories are
more accessible than abstract models. Anyone who witnesses a domain expert

describing a task step by step immediately gets a feel for how the work actually
functions in reality.

4.41 Description

In Domain Storytelling, domain experts tell stories from their everyday work.
Moderators draw these stories live using simple symbols: actors are represented
as pictograms, their activities as arrows with short descriptions. The result is a
visual narrative that shows how people and systems work together to complete
specific tasks. The method is easy to understand because it draws on the natural
way people pass on knowledge: through stories. Instead of reading dry process
documentation, participants immediately see how a typical situation unfolds and
which roles, work objects, and activities play a part in it.

4.4.2 Participants

Successful Domain Storytelling requires the right people in the room. Domain
Experts who can contribute authentic stories from their practical experience are
indispensable. In addition, Developers and Architects are needed to ask tech-
nical questions while listening, thereby revealing implicit assumptions. Product
owners, business analysts, and agile coaches are also important participants
because they can bridge the gap between the product vision and value creation
and support the moderation. It is often sufficient to start with a small, focused
group, as several storytelling sessions with different participants can easily be
combined later. It is important that those in the room are the ones who really
know what everyday work looks like.

4.4.3 Elements

The most important building blocks in domain storytelling are kept simple:

Actors represent people or roles that take action.

Work objects are things that are processed or moved in the process, such as
an order or a document.

Activities describe actions performed on work objects by the actors.

Several activities result in a story, i.e., a sequence that depicts a scenario from
the real world.

With these few elements, even complex processes can be presented in an easily
understandable way.

4.4.4 Stages

A Domain Storytelling workshop usually begins with the domain experts telling
a story, i.e., describing a typical process from their everyday work. Meanwhile,
the facilitators visualize the actors, work objects, and activities on a whiteboard
or in a digital tool. Once a first version is ready, a short reflection follows:
The participants check whether the story has been reproduced correctly. Then
variants and special cases are added so that exceptions and alternative processes
also become visible. Over time, several stories emerge that together provide a
comprehensive picture of the domain. This iterative structure makes it easy to
start small and expand the model step by step.

4.4.5 Facilitation tips

As afacilitator, you should record the stories in the language of the domain experts
without translating or abstracting terms. This is where ubiquitous language comes
in. Use simple symbols and keep the pace high so that the flow of the narrative
is not interrupted. Encourage participants to give concrete examples, as these
make the story more tangible. Make sure that different perspectives are heard by
specifically asking how other roles experience the process. Once several stories
have been collected, it is worth highlighting similarities and differences to reveal
patterns and recurring structures.

4.4.6 Benefits

Domain Storytelling is suitable for use in the discovery phase to make specific
work processes transparent and build a common understanding. It helps to re-
veal implicit rules, roles, and dependencies. This also reveals misunderstandings

that often remain hidden in everyday life. For teams, the method provides an ex-
cellent foundation for formulating requirements more clearly, defining bounded
contexts, and developing the ubiquitous language. Anyone who has experienced a
session not only understands the theory, but also has a tangible picture of how the
domain actually works, and that is precisely the crucial benefit of this method.

4.5 Conclusion

Collaborative modeling brings the principles described in the foundation, such
as close collaboration, common language, continuous learning, to fruition in the
real world. Whether through Business Model Canvas, Value Proposition Canvas,
EventStorming, or Domain Storytelling, in all cases, a space is created in which
business and technology think together.

For the target groups of this primer, from software developers and agile coaches
to product owners and business analysts, collaborative modeling offers concrete
tools for building bridges. Ultimately, it’s not just about models, but about align-
ment, comprehensibility, and sound decisions.

5 Strategic Domain-Driven
Design

Strategic Domain-Driven Design deals with the big picture: How can we structure
complex domains in a way that creates viable technical systems and suitable
organizational structures? While tactical DDD does the detailed work on the
model, strategic DDD provides the context in which this detailed work becomes
meaningful. The aim is to create clarity: Which parts of a domain are really
of strategic importance? Where is it worth investing in quality and in-house
development? And how do we prevent architecture or organization from missing
the actual needs of the business?

5.1 Problem- and Solutionspace

An important foundation of strategic DDD is the separation of problem and
solution space. In the problem space, we ask the question: What actually needs
to be achieved? Here, we are dealing entirely with the needs of users, business
models, and basic constraints. Technology is not important at this stage. Only
in the solution space do we address the how: Which architectures, systems, and

models implement the business purposes?

Domains and subdomains belong exclusively in the problem space. They describe
what an organization does, where its expertise lies, and how it creates value. All
other concepts of Domain-Driven Design, such as bounded contexts, aggregates,
entities, value objects, context maps, and ubiquitous language, belong in the solu-
tion space. They describe how the purposes of the subdomains are implemented

in technical and functional terms.

This distinction prevents hasty technology decisions and creates an early focus
on the business domain. A practical example: Anyone who identifies a subdomain
Doctor’s office management is describing the purpose of structuring processes in
a doctor’s office and managing patient information. Whether this is later imple-
mented as an app, web application, or part of a larger system is irrelevant at first.

Only when the business purpose is understood is it worthwhile to move into the
solution space.

5.2 Domains and Subdomains

Domains are the percieved areas of activity and expertise of an organization. They
are what a company “stands for™: its claim on the market, combined with a clear
purpose, specific expertise, and certain ways of working. A domain marks the area
in which an organization has expertise and in which it has established certain
processes and ways of working.

In large companies, several such domains often exist side by side. An automotive
company, for example, operates in the domain of vehicle development, but also in
the domain of financial services. Both domains differ fundamentally in terms of
requirements, expertise, and working methods. The same applies, for example,
to the regulatory environment. The “financial services” domain is regulated by
a regulatory entity called BaFIN (in Germany), while the “vehicle development”
domain is subject to the framework conditions of the German Road Traffic Regu-
lations (StVO) and occupational safety.

Subdomains are intersected within a domain, each of which fulfills a clear purpose.
Identifying and intersecting subdomains is a challenging task because it is not a
matter of technical distinctions, but rather of identifying coherent areas of purpse.
A subdomain should always focus on a precisely defined task. A rule of thumb
is that if you cannot describe the purpose of a subdomain in a single sentence
without using many “ands” or “ors,” it is too broad and probably not functionally
cohesive.

Itis helpful to look at processes: Pivotal events, i.e., key moments such as applica-
tion submitted or document checked, often mark transitions between subdomains.

Pivotal Events

Heuristic: A pivotal event probably lies on the boundary of a subdomain

Swimlanes, which indicate different paths or branches in the process, also help
with boundaries. They are often an indicator that something different is happen-

ing at these points.

Swimlanes

Heuristic: Swimlanes are indicators for different things happening and
therefore may indicate different subdomains

This distinction is important for the concept of cohesion. We want to achieve a
high degree of functional cohesion in a subdomain. Therefore, you should always

take a very critical look at whether the functionalities that are to be bundled in a
subdomain really have a very high degree of cohesion at the functional level.

Cohesion

Heuristic: Domain events in a subdomain have a high degree of
functional cohesion.

A means to check the degree of functional cohesion is to formulate the domain-
specific purpose of a subdomain. The fewer “and,” “or,” and “as well as” appear in
this text, the higher the degree of functional cohesion. A very valuable publication
on this topic is the “Structured Design” paper by Stevens, Meyers, and Constan-
tine. We will revisit the topic of “purpose” as it relates to bounded contexts.

Purpose

Heuristic: Each subdomain has a clearly defined functional purpose

ke

™ 4

Maybe the swimlane at the lower end B
is a means to an end for the purpose of
other events?

Subdomains correlate with each other towards a higher domain-specific purpose.
Together, they represent the problem space, meaning that they are linked in
terms of functionality without losing their autonomy. The goal is to keep these
relationships lean and clear. Loose coupling does not only arise in the code, it
already emerges at this level: the more coherent the subdomains are, the fewer
dependencies they require between each other.

In the Domain-Driven Design Starter Modeling Process, the decomposition of a
domain into subdomains happens in the “Decompose” phase.

5.3 Strategic Classification

Not all subdomains are equally significant. Strategic DDD distinguishes between
core, supporting, and generic subdomains. Core domains are those areas in which
an organization differentiates itself from the competition. These are of the highest
strategic relevance, which is why you should not compromise on quality and
ownership. Supporting subdomains are vital, but they do not differentiate. Here,
compromises are possible, for example in the form of customization of custom
of the shelf (COTS) software such as SAP for example. Finally, generic subdo-
mains provide commodity functionality that is better covered by Software as a

Service (SaaS) offerings than by proprietary in-house development with your best
engineers. This distinction is not an end in itself, but rather guides investment
decisions. Core domains belong at the center of in-house development with your
best engineering teams, while generic subdomains can often be realized more
cost-effectively with off-the-shelf products. The classification of subdomains can
change of time. A good example is a fashion company which I have worked with
in the past that initially viewed its e-commerce as a commodity, later profession-
alized it, and finally developed it as a core domain based on insourcing was able
to introduce new sales models within a few weeks and respond agilely to market

changes.
.
Notation !
High
. Sub-domain g
(current position)
. Sub-domain
(future position)
“ "~ Movement over time
. Big-bet sub-domain
Model
Platform sub-domain Complexity
Outsourced/Purchased
sub-domain
Team Topologies
X Team size
[xasasenice SUPPORTING
[[] collaboration
Low \ n
Ll
Low Business Differentiation High

(Image Source: https://github.com/ddd-crew/core-domain-charts)

In the Domain-Driven Design Starter Modeling Process, the strategic classifica-
tion of subdomains happens in the “Strategize” phase.

32

5.4 Bounded Contexts

Subdomains get implemented through bounded contexts in the solution space. A
bounded context defines a boundary within which a model exists in a consistent
language and which is tailored to a specific purpose (that of the subdomain). This
makes it the bridge between business and technology. The key principle here is
model specialization over generalization.

Many organizations have had the painful experience of trying to enforce a univer-
sal model that covers all eventualities just for the sake of reusability. The result
is an overloaded system without focus: for example, a “business partner” service
that is supposed to represent end customers, repair shops, and therapists equally
in an insurance company and thus includes hundreds of attributes. The result is a
mostly data-driven model that no one can understand and that doesn’t fulfill any
task properly.

DDD recommends specialized models that are clearly tailored to their purpose
instead. A participant at a conference is not a “customer” in the context of check-
in, but receives a badge. In the context of ticket sales, the same person represents
a financial transaction, and in the context of catering, an estimate of food require-
ments. Each model is specific to its purpose, and that is precisely what makes it
valuable as well as evolvable.

Tools such as the Bounded Context Design Canvas support this transition from
the problem space to the solution space. They help to capture the relevant terms,
rules, and communication flows for each subdomain and to develop a consistent
language. In practice, this often results in “living documentation” that provides
guidance for both architects and domain experts.

5.5 Working with the Bounded Context
Design Canvas

The Bounded Context Design Canvas is currently one of the more popular tools
in strategic Domain-Driven Design. It helps to structure and clarify the transition
from the problem space to the solution space. While many DDD workshops end
with a wealth of insights about domains and subdomains, the canvas ensures that

this knowledge does not simply evaporate, but is transformed into a tangible,
living artifact. Essentially, it serves to develop a clearly defined, commonly un-
derstood model for each identified subdomain: with its own language, its own

business rules, and clear communication boundaries. Each canvas represents a
possible or actual bounded context.

V5
Name: github.com/ddd
Purpose Strategic Classification Domain Roles

Domain Business Model
-core -revenue

- supporting - engagement

- generic - compliance
~other? - cost reduction

Evolution Role Types
-genesis - draft context
~custom built - execution context
- product -analysis context

- commodity - gateway context
-other

Inbound Communication

Outbound Communication
Ubiquitous Language

Context-spe

domain terminology

<quer> | <Command> <Event> <query> | <Command> <Event

Business Decisions

Key business rules, policies, and decisions

Assumptions Verification Metrics Open Questions

(Image Source: https://github.com/ddd-crew/bounded-context-canvas)

5.5.1 From the problem space to the canvas: the decompose
phase

After the decompose phase of the DDD Starter Modeling Process, the focus is
on working out the previously identified subdomains in detail. The fundamental
cornerstones are transferred to the canvas: the name, the purpose (i.e., the func-
tional purpose), and the initial ideas or potential candidates for the ubiquitous
language: i.e., the terms used by the people involved to talk about this part of the

domain. Please be aware that the ubiquitous language is more rigid than the terms
we jot down at the canvas at this stage.

Even at this early stage, it is worth noting down the first business rules that
we are aware of. These are an expression of the specific behavior expected in
the subdomain and give structure to the emerging model. This is where the
value of collaborative modeling becomes apparent: experts and developers sit
together in front of the canvas and align their language. “customer” might become
“participant”, “ticket“ might become “badge”, and suddenly there is clarity about
meanings that were previously implicit and therefore potentially ambiguous.

A separate canvas is created for each subdomain. This separation is important
because it ensures focus and coherence. A shared canvas for multiple subdomains
almost always leads to blurred boundaries and models growing together in an
uncontrolled manner. At this early stage, the focus is not on precision but on
orientation. The goal is to create an artifact that stimulates discussion and serves
as a communication anchor.

5.5.2 Making communication visible: the connect phase

Once you have identified subdomains and described their purposes, the connect
phase follows. In this phase, you examine the relationships between the subdo-
mains. The canvas helps you to systematically capture inbound and outbound
communication.

Inbound communication describes which events, commands, or requests a sub-
domain receives from its environment. Outbound communication, on the other
hand, shows which messages it emits on its own. We document this communica-
tion on the canvas to make the interaction between subdomains transparent.

Often, domain events become visible here, forming the backbone of loose cou-
pling. Instead of one subdomain directly calling another, it publishes an event,
such as “appointment confirmed” or “invoice created”, to which other subdo-
mains can react. This way of thinking shifts the perspective from synchronous
orchestration to asynchronous collaboration.

In this phase, the canvas serves not only as documentation, but also as a tool
for reflection: Do the communication relationships match the intended purpose
of the subdomain? Is its autonomy restricted by too many dependencies? When

such questions become apparent, the canvas is not a static form, but a mirror of
shared understanding.

During the decomposition into subdomains we had a strong focus on high (func-
tional) cohesion. The connect phase takes a look at the other important design
principle for good boundaries: loose coupling.

In terms of tools you can use Domain Message Flow Modelling (https://github.com/ddd-
crew/domain-message-flow-modelling), Activity Diagrams but also Domain
Storytelling works astonishingly well here. Just use your subdomains as actors
when you analyze communication with Domain Storytelling.

5.5.3 Taking strategic decisions: the strategize phase

The strategize phase is about strategically classifying the subdomains. The
Bounded Context Design Canvas provides the Strategic Classification field for
this purpose, which states whether a subdomain belongs to the core, supporting,
or generic domains.

This classification is more than just alabel. It influences how much energy, budget,
and attention a subdomain receives in further development. Core subdomains,
those that differentiate the organization, require intensive maintenance, high
quality, and, in most cases, internal development expertise. Generic subdomains,
on the other hand, should be deliberately simplified and, where possible, covered
by out-of-the-box solutions.

By visibly recording this classification on the canvas, the discussion about priori-
ties becomes tangible. The team can decide together where it is worth investing
deeply in modeling and where “good enough” is really good enough.

5.5.4 Refining language and rules: a continuous process

Throughout all phases, we continue to work on the ubiquitous language and
the business rules. These two areas are at the heart of every canvas. Language
and rules are the foundation on which we establish understanding and model
consistency.

New terms are added, old ones are questioned, and definitions are refined. At
the same time, they help to clarify or complement functional rules. Over time,
this creates a shared understanding that is viable for both the domain and the
technical implementation.

This process is particularly valuable when different disciplines are involved: prod-
uct management, development, UX, perhaps even support or sales. The canvas
acts as a catalyst here: it forces everyone involved to make implicit assumptions

explicit.

5.5.5 Working with uncertainty: open questions and
hypotheses

No model is created in isolation. Often, questions remain unanswered or as-
sumptions unconfirmed. The canvas has specific fields for this: Open Questions,
Assumptions, and Verification Metrics.

Open Questions document ambiguities such as business, organizational, or techni-
cal uncertainties. Assumptions record hypotheses, such as “Scheduling is always
linked to a doctor.” These assumptions form the basis for targeted learning. Fi-
nally, Verification Metrics define how it can be verified later whether an assumption
was correct. In this way, learning is systematically integrated into the modeling
process instead of just happening on the side.

These three fields promote a reflective attitude in the DDD context: it is not
about knowing everything from the outset, but about consciously dealing with
uncertainty.

5.5.6 From the canvas to the implementation: refinement in
the solution space

Once the work in the problem space reaches a stage of maturity, implementation
begins in the solution space. This reveals another feature of the canvas: it is not
a one-time result, but a living artifact. In the solution space, the contents of the
canvas are continuously refined. Terms become more precise, rules clearer, and
communication flows more accurately modeled. At the same time, it may happen

that a subdomain is divided into several Bounded Contexts in the course of the
work, each with its own canvas. This split is not a mistake, but an expression of
growing understanding. What initially appeared to be a single entity later turns
out to be several more clearly defined contexts, each with its own language and
responsibilities. It is precisely in this continuous process that the strength of the
Bounded Context Design Canvas lies: it combines the exploratory openness of the
problem space with the structured precision of the solution space. It is a thinking
tool, ameans of communication, and documentation all at once, and thus a central
link in strategic Domain-Driven Design.

5.6 Socio-technical alignment

Strategic DDD does not end with bounded contexts, but extends into the organi-
zation. Context maps can be used to visualize relationships between teams and
bounded contexts, which also map technical and organizational dependencies.
This clearly shows that clear context boundaries not only make the architecture
more stable, but also lay the foundation for autonomous teams.

Concepts from Team Topologies reinforce this approach: teams should be di-
vided along bounded contexts so that ownership, autonomy, and minimal coor-
dination are possible. Those who cleanly divide subdomains and contexts not
only create a robust software architecture, but also lay the foundation for an
organization that makes fast flow possible and provides excellent support for
value streams.

5.6.1 Context Maps

Context maps are a tool for visualizing relationships between teams and their
bounded contexts on a functional, technical, and organizational level. While
bounded contexts describe the boundaries within the solution space, the context
map shows how teams relate to each other, who depends on whom, and what
kind of collaboration or coupling exists.

It thus makes implicit dynamics explicit: power relationships between teams, the
propagation of models, and governance structures. Cleanly modeled code is of

little help if teams are caught in dependencies or models propagate uncontrollably
throughout the landscape.

Team-Relationships in Context Maps

Context maps consider not only technical interfaces, but above all social and
organizational relationships. Three basic types provide the foundation:

Upstream /| Downstream: The upstream team designs the model and shapes
the language. The downstream team consumes these results and depends on
the stability and quality of the upstream team. As in a river system, control lies
“upstream.” Understanding this direction is central to any context map.

Free: Teams operate independently of each other. There is no direct coupling,
either technically or organizationally. This freedom is valuable when collabora-
tion is only loosely or temporarily required, but carries the risk of inconsistent
models.

Mutually Dependent: Two teams are mutually dependent on each other. De-
cisions must be coordinated, and changes require synchronization. Such rela-
tionships are particularly sensitive because they can easily lead to coordination
bottlenecks. They require explicit communication and release mechanisms.

These three relationship types determine how closely teams work together, how
dependent they are on each other, and which integration patterns make sense.
The context map serves here as a mirror of the real organizational dynamics, not
as an idealized image.

Context Mapping Patterns

1. Open-Host Service (OHS) An upstream context provides a stable, documented
interface for many consumers, a kind of a public APIL. Technically, this can be an
API, an event stream, or a message format. It is neutral and extensible, ideal for
many downstream systems.

2. Anticorruption Layer (ACL) The downstream system protects itself with a
translation layer that converts the external model into an internal one. This layer

isolates legacy issues and enables evolutionary design. ACL is one of the most
crucial decoupling patterns for integrations.

3. Conformist (CF) The downstream team adopts the upstream system model
unchanged. This can happen out of necessity, convenience, or conviction. A con-
formist avoids translation logic but loses autonomy. In legacy system landscapes,
this is often an indicator of tight coupling.

4. Shared Kernel (SK) Two contexts share part of the model or even artifacts
(e.g.,alibrary or database). This saves integration effort but creates high coupling.
Acceptable if the shared part is small and stable; toxic if different teams (or
suppliers) are pulling on it.

5. Partnership (PNR) Teams that have a shared kernel are mutually dependent
and should form a partnership. They plan, develop, and integrate together. Suc-
cess or failure is mutual. Partnerships require trust, transparency, and frequent
coordinated releases. On the other hand they are a high indicator for cross-team
coordination and thus for bottlenecks.

6. Customer/Supplier Development (CUS-SUP) The upstream team is the
supplier, the downstream team is the customer. Requirements are agreed
upon jointly, but there is a hierarchy. This pattern helps to shape influence in
a targeted manner: Who is allowed to demand what, who delivers what and
when? Deviations from this are indicative: “vetoing customers” or “overcautious
suppliers” reveal governance and evolution risks.

7. Published Language (PL) A shared language in which systems exchange infor-
mation. It is documented, supported by multiple parties, and decouples internal
models from interfaces. In combination with an OHS, it often forms the standard
for integration. Think about iCalendar or vCard as examples.

8. Separate Ways (SW) Sometimes the best integration is no integration at all.
If the effort involved in linking exceeds the benefits, it is better to let teams work
independently or to solve processes organizationally. “Separate ways” stands for
conscious separation, often temporary, sometimes permanent.

9. Big Ball of Mud (BBOM) Refers to chaotic, unstructured systems without
clear model boundaries. They are too large, too diffuse, and too risky for profound

interventions. It is important to isolate them so that their model does not spread
further. Anticorruption layers are mandatory here, conformists a warning and
shared kernels a no-go.

Benefits of Context Maps

Context maps are more than just architecture diagrams, they are tools for organi-
zational diagnosis. They help to reveal three key perspectives:

Power and influence: Who controls models and interfaces? Where do dependen-

cies arise?

Model propagation: Which models spread uncontrollably through copy-paste or
shared kernels?

Governance: How are changes decided? Are there clear responsibilities or hidden
veto structures?

With these insights, teams can make informed decisions: Which relationships
do we want to maintain? Where do we need to draw boundaries? Where does
technical decoupling help and where does organizational decoupling help?

Practical application and visualization

Context maps can be modeled on whiteboards, in digital collaboration tools, or
with sticky notes. Typically, teams and their bounded contexts are represented as
circles, and relationship types are represented as lines with pattern labels (e.g.,
customer/supplier, ACL, partnership, SW).

An example: An upstream team offers a model via an Open Host Service (OHS)
that a downstream team integrates via an Anticorruption Layer (ACL). Or two
teams go “Separate Ways” — documented, accepted, stable.

This visual language also makes political and organizational flows visible which is
the true value of context maps in strategic Domain-Driven Design.

Application
Registration
and
Verification | SUP

[o]
ACL SupP =
Credit

Decision

o, Lo

/CUSQ
Real Estate

CF| Scoring | ACL

ASSZs;r_nent IE \ _ / Iﬂ
o] o]

OHS OHS /PL
External real .
estate data Credit

Agency

brokers

(Image source: https://leanpub.com/ddd-by-example/)

Resources and Tools

An excellent starting point is the open-source project Context Mapping by
the DDD Crew (https://github.com/ddd-crew/context-mapping). It offers a

lightweight notation, many visualization ideas, and a Miro Starter Kit that can be
used to model your own maps directly. The examples available there show how
technical and organizational relationships can be represented equally.

For teams that want to maintain context maps automatically or based on code, the
Context Mapper tool (https://contextmapper.org/) is also a good option. It allows
you to describe bounded contexts and their relationships in a domain-specific
language and generate diagrams or architecture documentation from them. This
creates a bridge between conceptual design and documented architecture.

5.6.2 The Relationship between Domain-Driven Design and
Team Topologies

Domain-Driven Design and Team Topologies complement each other seamlessly.
Both approaches address the question of how complex systems can be designed
and further developed. DDD does this from a domain-oriented perspective, while
Team Topologies approaches it from an organizational perspective. DDD helps
to identify domain boundaries in the software model, Team Topologies indicates
how these boundaries should be incorporated into the team structure and com-
munication channels of an organization.

Joint goal: Socio-technical alignment

Both DDD and Team Topologies strive for socio-technical alignment. This means
a close link between the domain structure, technical architecture, and organiza-
tional setup. In a well-aligned system, team boundaries reflect the bounded con-
texts defined in strategic DDD. The goal: Teams have end-to-end responsibility
for clearly defined functional areas and can deliver value independently of each
other.

DDD describes what should be separated: the functional domain boundaries.
Team Topologies on the other hand describes how this separation can be im-
plemented in terms of organization and communication. Together, they make it
possible to combine architectural clarity and organizational autonomy.

Team Types according to Team Topologies

In an ideal setup, each team is assigned to a bounded context. This context
defines the domain model, language, and responsibilities of the team. This creates
autonomous units that can act quickly and independently within their context
without having to rely on central coordination. The four team types from Team
Topologies, which are stream-aligned, enabling, complicated subsystem, and plat-
form, can be mapped to DDD concepts:

Stream-aligned teams work along a value stream that usually corresponds to one
or more bounded contexts. They have full responsibility for the features that arise
from this domain.

Enabling teams help stream-aligned teams adopt new practices, such as collab-
orative modeling or event storming. They promote DDD adoption in the orga-
nization and can also provide valuable support in day-to-day architecture and
development work.

Complicated subsystem teams take care of sophisticated components that are
not central to the domain but require a high level of expertise. They often work
on supporting or generic subdomains.

Platform teams provide shared infrastructure and services that make other
teams’ work easier without restricting their autonomy.

This assignment ensures that the boundaries derived from DDD do not remain
theoretical, but become effective within the organization.

Communication Flows and Team Interaction Modes

Team Topologies describes three basic ways in which teams work together using
Team Interaction Modes. These modes help to consciously design communica-
tion channels and control dependencies in a deliberate manner, rather than by
accident.

Collaboration refers to intensive, time-limited cooperation between teams that
serves a clear purpose. It takes place when a problem is new or complex and re-

quires multiple perspectives, such as when introducing a new API or developing a
new domain model. Collaboration is focused on learning and joint exploration.

X-as-a-Service stands for a stable, service-oriented relationship: a team offers a
clearly defined service or platform function that other teams can consume. This
form of interaction reduces cognitive load because consumer teams can focus on
their own domain while the service provider delivers stability and reliability.

Facilitating describes a supportive collaboration in which one team (usually an
enabling team) helps other teams adopt new skills, practices, or technologies. The
focus is not on the result, but on empowerment. The goal is to strengthen the
supported team and then release it back into autonomy.

These three interaction modes form the basis for a deliberate communication
strategy between teams. They enable teams to collaborate to varying degrees
depending on the situation: temporarily, permanently, or in an advisory capacity.
Only in combination with the principles of DDD does this result in a complete
view: The patterns of the context map describe the domain-specific and model
coupling, while the interaction modes map the social and organizational level.

Fracture Planes

A key connecting element between Domain-Driven Design and Team Topologies
are the so-called fracture planes. They describe possible dividing lines within
a software or organizational architecture, along which teams and systems can
be sensibly separated from each other. While DDD identifies these lines from
a domain perspective, Team Topologies provides a language for organizational

implementation.

Fracture planes can run along various dimensions: functional (e.g., subdomains),
frequency of change, regulatory requirements, technology, or even organizational
responsibilities. Combining them with bounded contexts is particularly valuable,
as they provide a natural fracture plane that teams can use for orientation.

Where bounded contexts arise, team boundaries should also run. This creates
teams that act autonomously within their fracture plane and understand their

responsibilities without being dependent on other parts of the system. This
strengthens the alignment between domain structure and organization.

Evolutionary domains and organizations

DDD and Team Topologies also share the insight that boundaries are not static.
Functional domains change, organizations grow, and new technical possibilities
arise. Accordingly, bounded contexts and team structures must also be regularly
reviewed and adapted. What is a core domain today may become supporting or
generic tomorrow, and vice versa.

The key lies in recognizing changes early on and actively shaping them. Team
Topologies offers tools such as Team API and Evolutionary Change for this pur-
pose, while DDD uses Context Maps and Strategic Classification to show where
adjustments make sense from a technical perspective. Together, they enable an
organization to remain adaptable without losing its coherence.

The socio-technical aspect is addressed in the DDD Starter Modeling Process in
the “Organize” phase.

5.7 Conclusion

Strategic DDD is more than a set of methods, it is a framework for dealing with
complexity at a large scale. It forces us to first clearly understand the domain
purposes in the problem space before making technical decisions in the solution
space. Domains are the areas of activity and expertise of an organization: what
it stands for, where it has developed specialized knowledge and characteristic
workflows. Within these domains, subdomains are sliced that have high cohesion
and whose correlations are lean. Bounded contexts in the solution space provide
specialized models instead of drifting into generic data dumps. Classification into
core, supporting, and generic subdomains helps to steer investments in a targeted
manner. Finally, socio-technical alignhment connects the functional and technical
structure with the organization itself.

This makes strategic DDD a bridge between business, technology, and organiza-
tion. This creates the foundation for systems that not only work today but will
also be viable tomorrow.

6 Tactical Domain-Driven Design

Strategic Domain-Driven Design describes how an organization can comprehend,
segment, and structure its business domains. It provides language, instruments,
and paradigms to establish orientation. However, this map alone is insufficient.
The actual craft begins at the tactical level: the concrete design of what
occurs within a bounded context. Here, expertise is no longer analyzed, but
constructed.

Tactical Domain-Driven Design is the art of forming living structures from con-
cepts: weaving architecture, models, and language together in such a way that they
form a stable whole.

Those who take DDD seriously recognize that strategic insights only take effect
when they are translated into concrete technical building blocks. Boundaries
between contexts only make sense if what lies within those boundaries is clear,
understandable, and consistent. This inner clarity is the task of tactical design. It
is the level at which teams decide which objects bear responsibility, how consis-
tency is maintained, which rules apply permanently, and how systems are allowed
to change without falling apart.

Tactical DDD is therefore not a subordinate detail, but the practical form of the
ubiquitous language. It translates knowledge into structure, language into code,
and code back into new insights. The real value arises when this feedback is
consciously designed: experts and developers understand the same terms, see the

same connections, and correct any misunderstandings.

Where strategic DDD draws maps, tactical DDD describes the architecture. It
works in fine layers: entities, values, aggregates, events, services, and factories
form the building blocks with which business domain knowledge can be expressed
precisely. Added to this are architectural patterns that focus on the domain, such
as hexagonal architecture or event sourcing.

Tactical Domain-Driven Design does not view software as a static entity, but as a
system in motion. A system that has learned to adapt. At its core, it is not about
abstraction, but about precision: the ability to model meaning so clearly that it
remains recognizable in code.

6.1 Tactical Patterns

At the heart of tactical DDD are a series of proven building blocks called tactical
patterns. Together, they provide a language and concepts for expressing and
implementing domain logic. These patterns should not be viewed in isolation, but
rather as elements of a coherent vocabulary: entities, value objects, aggregates,

domain events, repositories, services, and factories.

They all have the same goal: coherence in modeling. They give the software a
structure that respects the domain model while embedding it in the technical
framework of the architecture.

6.1.1 Entity: Identity and lifecycle

Within a domain, there are things that persist over time. Their state may change,
but their identity does not. This temporal continuity is the defining characteristic
of an entity. An entity represents a concrete domain object that passes through
different phases during its existence while remaining recognizably the same. It
has a name and meaning in the ubiquitous language and is defined not by its data,
but by its identity.

In classic object-oriented thinking, an entity was often reduced to an object with
an ID. In the context of Domain-Driven Design, this view is too narrow. An entity
stands for a specific domain individual with its own history. Its behavior is closely
tied to its lifecycle: which operations make sense or are even possible depends on
where the entity currently is in that lifecycle. Methods therefore express domain

intentions, not mere state changes.

The lifecycle of an entity is not a technical detail but a core domain concept. Enti-
ties come into being, evolve, and eventually reach an end—explicitly or implicitly.
These transitions are part of the model and must be expressible in the language of
the domain. An entity “knows” which stage it is in and which next steps are valid
from a business perspective.

Designing an entity therefore always starts with language and time. How do
domain experts talk about this thing as it exists and changes? How do they rec-
ognize it as “the same” despite many changes? Which states do they deliberately

distinguish? Entities are not just classes, but domain concepts with identity and
duration—and it is precisely these two aspects that make them one of the central
building blocks in tactical Domain-Driven Design.

6.1.2 Value Object - Meaning and Expressions

Value objects represent concepts where value, rather than identity, is decisive.
They are the precise way to express functionality at the finest level. A value object
exists only through its properties and the behavior that results from them.

The key property is immutability. A value object does not change; it is replaced.
This seemingly technical principle is a profound functional proposition: meaning
does not change retroactively. When a price, quantity, or time period changes, a
new value is created, not a modified old one. This preserves the consistency of
the domain over time.

Value objects are equal if their properties are equal, not because they are the same
object. They are compared based on their meaning. This makes them reliable
building blocks for calculations, validations, and communication between larger-
scale concepts such as aggregates which we will discuss next.

Furthermore, value objects are carriers of language. A system that speaks in terms
of the domain is more sustainable and readable than one that relies on primitive
types. An operation such as amount.add(otherAmount) is not only technically
but also semantically understandable. The syntax reflects the language of the

domain.

Value objects are thus the opposite of meaninglessness. They are precise terms
that preserve meaning and prevent errors at the semantic level. They make the
code expressive and robust at the same time.

6.1.3 Aggregates - Consistency boundaries and invariants

Aggregates group entities and value objects into units of domain-specific con-
sistency. They define where transactions end and where consistency must be

ensured. An aggregate root is the only entry point through which the internal state
may be changed.

Designing aggregates is an exercise in balance. If they are too large, you lose
flexibility; if they are too small, you lose meaning. The intersection along business
invariants is crucial. These invariants are the rules that must always apply, not
sometimes, not possibly. If two pieces of data or behaviors must be valid together,
they belong in the same aggregate. If they vary independently, they do not.

In practice, aggregates often represent the most difficult but also the most impor-
tant design decisions in tactical DDD. The art lies in finding consistency bound-
aries that are functionally necessary but technically viable. Aggregates are not
purely structural patterns, but rather an expression of functional responsibility.
Their task is to maintain integrity while enabling autonomy.

The central criterion here is the invariant. An invariant describes what must
not be violated under any circumstances. In a banking system, for example, the
following could apply: “An account may never have a negative balance unless it
has an approved overdraft.” This sentence contains everything you need to slice
an aggregate: the account, the balance, the rule. These three elements form a
semantic unit that must remain consistent in a transaction context.

Aggregates are therefore not a collection of entities, but representations of busi-
ness coherence. The aggregate root (entity) is the guardian of this coherence. It
decides which operations are allowed and mediates between internal state and
external behavior.

As the system grows in size, the relationship between aggregates becomes more
complex. Communication across boundaries then usually takes place via domain
events, which we will discuss next. In such cases, the strict consistency of a
monolith is exchanged for a flexible form of integrity. This means that changes are
not visible everywhere at the same time, but spread via events. This principle of
eventual consistency is not a shortcoming, but a conscious architectural decision.
It allows systems to be distributed and yet reliable.

Sara Pellegrini’s concept of Dynamic Consistency Boundaries (DCB) comple-
ments this view. It recognizes that consistency is not an absolute value, but

a contextual one. A system can decide situationally how much consistency it
needs. This creates a model that deals flexibly with load, availability, and business
significance. Instead of enforcing a single, universal pattern, DCB allows for a
variety of consistency strategies: from strict isolation to soft, time-delayed syn-
chronization.

Essentially, this means that aggregates are not boundaries of the software, but
boundaries of understanding. They define what a team perceives as inseparable.
And because this understanding changes with the domain, the design of aggre-
gates is also evolutionary. In a living system, aggregates are recut, invariants
are shifted, and events are grouped differently. Tactical DDD sees this not as a

weakness, but as an expression of maturity.

6.1.4 Domain Event - The Storyline of the Domain

Domain events are the most basic form of communication in a DDD system. They
are the language used to express domain expertise over time. A domain event is
not a notification or a signal. It is a statement about a fact that has occurred in the
domain. This wording is crucial: an event describes something that has happened,
not something that is supposed to happen.

A domain event has three essential characteristics. It is past-oriented because it
only refers to events that have already occurred. It is immutable because a fact
cannot be undone. And it is meaningful because it is formulated in the language
of the domain.

Domain events make time into a first class concept in the system. Instead of
fixing states in tables or objects, you tell a story made up of events. Each new
fact is added to this chronicle. This enables traceability, auditing, reproduction,
and perhaps most importantly understanding.

Events are also the means by which aggregates, bounded contexts, and entire
systems are loosely coupled. When an event occurs, other components can re-
spond to it without knowing its originator. This creates independence and enables
evolution. In this form, domain events become the infrastructure of knowledge:

they connect the past, present, and future of technical expertise.

In event-driven architectures, domain events form the basis for asynchronous
communication. They are both technical (as messages, for example) and semantic
(as concepts). However, their greatest strength lies not in integration, but in
clarity. Every domain event forces meaning to be made explicit. You cannot
publish something you do not understand.

6.1.5 Repository — The abstraction of data access

Arepository is the bridge between the domain model and persistence. Its purpose
is to abstract the storage and loading of aggregates in such a way that the business
logic remains unaffected. The business-logic code thinks in terms of aggregates,
not tables.

A good repository behaves as if it had a collection of objects in memory. Methods
such as findByld, save, or delete are formulated in domain terms and follow the
ubiquitous language. The implementation — whether via a relational database, a
document store, or an event log - remains interchangeable.

This makes the repository a model of separation of responsibilities. It allows the
domain to deal exclusively with behavior, while persistence remains a technical
detail. In testable architectures, the repository is typically abstracted by interfaces
that are defined in the domain or application layer and implemented in the

infrastructure.

An important aspect is that repositories always work with aggregates, never with
sub-objects. They guarantee the consistency of the transaction and prevent inter-
nal structures from leaking to the outside.

6.1.6 Service - Orchestration

Not all behavior in a domain naturally belongs to a single entity or aggregate. Some
operations inherently span multiple aggregates, while others express domain logic
that is conceptual rather than owned. Services exist to model such behavior.

From a plain Domain-Driven Design perspective, a service is a domain concept
expressed as an operation. It orchestrates collaboration between aggregates, en-
tities, repositories, and factories without becoming an owner of domain state
itself. A service represents doing rather than being: it captures meaningful domain
actions that cannot be cleanly located on one aggregate root without distorting
the model.

DDD itself does not mandate a strict categorization of services. The often-quoted
distinction between application services and domain services originates primarily
from architectural styles such as Hexagonal Architecture. In that context, appli-
cation services are used to coordinate use cases and technical concerns, while
domain services remain part of the pure model. DDD, however, is more pragmatic:
it focuses on expressing domain behavior clearly, regardless of whether that
behavior is triggered by a use case or composed across aggregates. We will adress
Hexagonal Architecture later in this chapter.

What matters is responsibility. A service should contain domain logic only when
that logic is genuinely shared or coordinating in nature. It should not degenerate
into a procedural script nor replace behavior that properly belongs inside aggre-
gates. Services do not “own” invariants; they respect and invoke them. They rely
on aggregates to protect consistency and on repositories to access them, but they
do not undermine those boundaries.

Used well, services make structure explicit. They highlight places where collab-
oration is required and where no single model element should dominate. Their
presence often signals seams in the model: points where multiple responsibilities
meet without being merged. In this sense, services are less about filling gaps
and more about preserving clarity in a domain model that remains cohesive,
expressive, and evolvable.

6.1.7 Factory - Externalisation of construction logic

Factories are mechanisms used to correctly construct new aggregates or entities.
They summarise construction logic, check prerequisites and guarantee that an
object starts in a valid state.

A factory is not simply a construction tool, but an instrument of integrity. It
protects against faulty states and ensures that all invariants are checked during
creation. Especially in the case of complex aggregates or event sourcing, where a
series of events must be initially generated, the factory becomes the formal start
condition of the system.

Its existence frees the model from trivialities. If objects do not need to know how
they are created, they can concentrate entirely on their behaviour. Factories thus
support a principle that runs through the entire DDD: placing every responsibility
where it belongs semantically.

6.2 Architectural Patterns

Architecture in the sense of tactical DDD is not a technical end in itself. It is
the visible result of an attitude towards the business domain expertise. Every
architectural decision is ultimately a statement about how much one understands
the domain and how consistently one is prepared to translate this understanding
into code.

Tactical Domain-Driven Design views architecture as a linguistic phenomenon.
Structures do not arise from technology, but from semantics. When domain

expertise is the source, architecture becomes a form of meaning.

In this sense, architecture is not rigid. It is a conversation about stability and
change. The strength of DDD lies in the fact that it does not prescribe an architec-
ture, but a criterion: the chosen structure must support the flow of expertise.

6.2.1 Layered Architecture

The classic layer architecture is something many systems have in common. It
splits software into layers like presentation, application, domain, and infrastruc-
ture. Each layer only knows about the one right below it. Data flows down, control
flows up. This setup has one clear advantage: it’s easy to understand.

For teams starting with DDD, this model often provides a solid foundation. It
creates discipline, forces the separation of (technical) concerns, and facilitates
testing in clearly defined areas.

But it is precisely this simplicity that can also become a limitation. As the domain
grows, subtle dependencies arise between the layers. Business logic seeps into the
application layer, technical details creep into the domain. The boundaries blur
until layers exist only as project folders.

The problem lies less in the architecture than in its implicit hierarchy. The layered
architecture places technology at the base and business logic in the middle. This
creates a subtle dependency of language on infrastructure.

What initially appears to be organizational order is in fact a semantic distortion:
the domain is not the foundation, but the center. When the business logic changes,
everything around it must be able to move. In classic layered architecture, this is
rarely the case.

Nevertheless, it remains useful in certain contexts. In systems that are man-
ageable, stable, or highly data-centric, a layered architecture can be perfectly
adequate. Its weakness only becomes apparent when systems begin to come to
life, when models evolve, and teams are expected to act independently. Then the
layered model becomes too narrow for what DDD aims to achieve: domain-driven

evolution.

6.2.2 Hexagonal Architecture

Hexagonal architecture, made famous by Alistair Cockburn as Ports and Adapters,
arose from the desire to overcome this limitation. It reverses the relationship
between business logic and technology: all dependencies must point inward.

Driving Adapters

Driven Adapters

| I REST SOAP m
Controller Application Adapter
Mobile Client AN £ Backend
System
Message
Publisher () c
Desktop A
Browser
L
L
F
L
(o]
N w
Atom HTTP Relational
Feed Database
<

€

D M
(4 Listener

Message
Broker

Storage

Adapter
Cloud File
Storage

The domain model is at the center of the hexagon. It is the core of understand-
ing, pure domain expertise, unaffected by frameworks and database access. The
domain model usually contains entities, value objects, aggregates, and internal
domain events. In the domain layer, the domain model is usually supplemented
by domain services.

The application layer lies around it. It orchestrates the use cases. It contains
application services and ports, coordinates processes, executes transactions, and
manages policies. The application layer is the layer of action. It connects the
meaning of the domain with what the system does.

The adapters are located at the periphery. They implement the ports through
which the system communicates with the outside world. An adapter can be a user
interface, a REST endpoint, a connection to a message broker, or a database access
object.

This structure makes a simple but profound statement: all dependencies point
inward. All knowledge about technology, frameworks, or infrastructure remains
outside the core.

The hexagon is therefore not a purely technical form, but a semantic promise.
It protects meaning from erosion by technology. Systems built in this way can
change over the long term because their essence remains stable. Business logic
can be tested without starting infrastructure; infrastructure can be replaced with-
out affecting the domain.

But here, too, the hexagonal architecture is a tool, not a dogma. Not every system
needs this level of separation. In small projects, it can seem too complex, and in
highly exploratory phases, it can even be a blocker for flow. The key thing is that
the team understands why it is deciding for or against this type of architecture.

Architecture should match the maturity level of the organization. The hexagon
shows a direction. It forces language, clarity, and conscious boundaries. But it
also requires discipline, and discipline only comes when you feel the benefits.

6.2.3 Event Sourcing

Event sourcing takes a different approach to persistence than most traditional
systems. Instead of storing only the current state, it stores every relevant change
as a sequence of events. The current state is derived by replaying these events in
order. In other words, state is not written directly; it is reconstructed from what
has happened.

Each event represents a fact that occurred in the domain: an application was
submitted, a score was calculated, a contract was approved. These events are
stored permanently and in the language of the business. Because of this, the
system does not just know what the current state is, but also how it came to be.

This approach has practical consequences. Audit trails come for free, because the
full history is available. Errors can be analyzed by inspecting past events, and
alternative scenarios can be explored by replaying the same events with different
logic. Debugging often becomes easier, because behavior can be traced step by
step instead of inferred from snapshots.

Event sourcing also raises the bar for modeling. Every state change must be
expressed explicitly as a domain event. Vague updates are no longer sufficient; the
model must name what actually happened. This often leads to clearer terminology

and better alignment with how the business talks about its processes. Events
become durable records of business decisions, not just technical notifications.

At the same time, event sourcing introduces additional complexity. Event
schemas must evolve carefully, because old events remain part of the
system forever. The separation between command handling and querying
becomes important, as rebuilding state from events has different performance
characteristics than reading a current snapshot. Teams must also accept that
history is immutable: past events cannot be changed, only compensated by new

ones.

Used thoughtfully, event sourcing works well with flexible consistency bound-
aries. Aggregates enforce consistency at the time commands are handled, while
the event stream preserves a complete and reliable history. This leads to systems
that are resilient not only in terms of data, but also in terms of change. When
time is treated as a first-class concept in the model, evolution becomes a design
concern rather than an afterthought.

6.2.4 CQRS

Command Query Responsibility Segregation (CQRS) builds naturally on the ideas
behind event sourcing, but it is also useful on its own. At its core, CQRS recognizes
that changing state and reading information are fundamentally different concerns.
They serve different purposes and place different demands on the model.

On the command side, the system handles change. Commands express an inten-
tion to do something. They are validated against business rules, checked for invari-
ants, and—if accepted—Ilead to state changes. In an event-sourced system, these
changes are captured as domain events. In a state-based system, they result in
updated state. In both cases, the command side is about correctness, consistency,
and protecting the integrity of the domain.

The query side has a different focus. It exists to answer questions. It does not
enforce invariants or coordinate transactions; it is optimized for fast access, clear
structure, and expressive views of the data. Read models are shaped by the needs
of consumers: user interfaces, reports, dashboards, or external systems. They

often denormalize or precompute information to make queries simple and effi-
cient.

The strength of CQRS lies less in the mechanics and more in the mental model
it introduces. It forces a clear distinction between doing and knowing. Writing
answers the question “What is allowed to happen?” Reading answers “What do
we currently know?” By separating these concerns, the model becomes easier to
reason about, especially as complexity grows.

In combination with event sourcing, this separation becomes very explicit. Events
form the bridge between the two sides. They record what happened on the write
side and serve as the input for projections on the read side. Different projections
can coexist, each representing a valid perspective on the same underlying history.
This makes it possible to evolve read models independently, without risking the
core business rules.

CQRS does not require event sourcing. It can also be applied in systems that store
only current state. In those cases, commands still modify one model, while queries
read from another. What matters is not the storage technology, but the decision
to separate responsibilities deliberately.

Seen this way, CQRS is not a pattern you “install” in a system. It is a design stance.
It aligns closely with Domain-Driven Design by encouraging clear boundaries, pre-
cise language, and models that reflect intent. Things that mean different things are
modeled separately—and only connected where shared meaning truly exists.

6.3 Deployment Options

DDD predates the term “microservice.” When Eric Evans published his book
in 2003, nobody was thinking in terms of microservices, but rather in terms of
contexts. Domain-Driven Design emerged long before microservices, containers,
or cloud environments. It never relied on distributed systems to be effective. On
the contrary, early DDD models lived in modular, monolithic applications which
aimed to be well-structured, linguistically clean, and technically coherent. DDD
is a framework for thinking, not an infrastructure concept. The task is not to

divide systems, but to design boundaries. How these boundaries are deployed is
a secondary question, not the primary one.

Therefore: DDD does not need microservices.

In practice, a simple heuristic applies: model first, deployment later. Those who
distribute too early only distribute misunderstandings.

6.3.1 Monolith

The word “monolith” has an undeserved negative connotation. It suggests rigidity,
impenetrability, and technical debt. But in reality, a monolith is nothing more than
a system that runs in a process space. Whether this process is well-ordered or
chaotic is determined not by the deployment form, but by the design.

A well-structured monolith can be one of the clearest expressions of Domain-
Driven Design.

If the internal modules are structured along functional boundaries, if commu-
nication between them takes place via explicit interfaces, and if each module
is understood as a bounded context, then the result is what is now known as a
modulith.

The modulith consists of several contexts that live within a deployment but are
clearly separated from each other. Each context can be tested, developed, and
modified independently without disturbing the rest. The deployment is shared,
but the architecture is decentralized. The result is a system that combines the
simplicity of shared processes with the clarity of separate models.

Such a structure is often the best choice for organizations that operate in stable
business models or are in a learning phase. It allows for rapid refactoring, easy
deployment, and shared data storage without sacrificing the principles of DDD.
Above all, it provides a platform for evolution: as expertise grows, individual
modules can become independent—in their own deployments, their own teams,
their own life cycles.

The monolith is then not a contradiction to microservices, but their logical ori-
gin.

6.3.2 Microservices - Distributed Boundaries

The idea of microservices has changed software architecture in recent years. It
promises independence, speed, and team autonomy. But it also brings with it new
forms of complexity. From a DDD perspective, microservices are nothing more
than physically separated bounded contexts. They make visible what DDD has
long described: that boundaries must not only be conceived, but also lived.

When each team is responsible for a context, true ownership emerges. The lan-
guage within the service can develop independently. Decisions that used to be
made centrally are now made where the knowledge is. This autonomy is the
greatest gain — but also the greatest challenge. Because distributed systems are
never just technical artifacts; they are organization cast in code.

Where Modulith uses internal interfaces, microservices communicate via net-
works. This makes errors visible, but also expensive. Data must be separated,
consistency becomes loose, and integrations must be orchestrated. The price of
independence is increased complexity. DDD helps here because it understands
this separation not as a technical requirement, but as a business necessity. A mi-
croservice should never be created because you want microservices, but because
a context has very specific quality requirements. This is not a DDD decision but
an architectural one.

In the best case, the transition is organic: microservices grow out of a modular
system after boundaries have become stable. When teams know their contexts,
when communication is understood, and when models can evolve independently
of each other, then physical separation can take place without compromising
semantic integrity.

This is the real meaning of the “model first, deploy later” principle. Only when
you have mastered the boundary is it worth distributing it.

6.3.3 Self-contained Systems - Thinking a little bit bigger

Between a single monolithic system and a landscape of fine-grained microser-
vices lies another architectural option: self-contained systems (SCS). An SCS is
a system that delivers a complete piece of functionality end to end. It includes

everything it needs—from user interface to domain logic to persistence—and
interacts with other systems only through well-defined interfaces.

The core idea is simple: instead of splitting a system by technical layers or in-
frastructure concerns, it is split by business responsibility. Each self-contained
system owns its functionality, its data, and its internal model. Other systems do
not reach into its database or reuse its internal code; they communicate only
through explicit integration points such as APIs or events.

This makes SCS closely aligned with Domain-Driven Design, but with a deliber-
ately pragmatic focus. The goal is not maximal decomposition, but clear own-
ership and autonomy. A self-contained system is independently deployable and
independently evolvable, while still being part of a larger system landscape.

Compared to microservices, self-contained systems are usually larger in scope.
They often cover an entire functional area rather than a narrowly defined capabil-
ity. This makes them easier to understand and operate, especially in organizations
where teams are already structured around broader business responsibilities. An
SCS is less like a single service and more like a small application that plays a well-
defined role in a network of systems.

In practice, self-contained systems often emerge naturally. A module that has
a clear purpose, stable boundaries, and little coupling to the rest of the system
can be separated without major redesign. When this happens, the architecture
evolves step by step. Existing models and responsibilities remain intact; only the
deployment and integration boundaries change.

This evolutionary path is one of the main strengths of SCS. The architecture
grows by extracting proven units, not by enforcing a target structure upfront.
Boundaries are shaped by domain understanding and organizational reality, not
by technology trends. As a result, systems remain understandable, adaptable, and
connected—without the overhead of unnecessary fragmentation.

6.4 Design-Level EventStorming - From
the model to the implementation

Design-Level EventStorming bridges the gap between strategic thinking and
technical implementation. It translates the insights gained from Big Picture
EventStorming and context delimitation into a concrete, implementable model
within a bounded context.

Metaphorically speaking, the big picture draws the map and the design level drafts
the blueprint for a building. Its goal is to understand the behavior of a system in
such a way that it can be directly translated into code and in such a way that this
code speaks the language of the domain.

Read Model wird in Ul dargestellt

Consistent Read R Ul e (il

" Rules f Model p\
uuuuuuuuuuuuuuu \ 1 wi

Domain Command
Event

T Bdtermal _, Tl mJ

System <wenn - dann>

6.4.1 Preparation - The scope and the stage

A design level workshop always begins with a clear focus. In contrast to the big
picture, which examines an entire domain, here the focus is on a limited flow of
events - a sequence of decisions and reactions within a bounded context. This
scope can be a single use case, a central event, or a sub-process that is technically
significant.

The modeling space in which the work is done physical or digital is a central
element. All participants must be able to see the same area and interact with it
at the same time.

The moderator guides the team in small steps from the first event to the complete
event chain. The motto is: “Let the domain speak, not the technology.” Each event
is formulated in the past tense, each command as an action that could lead to an
event. This gradually creates a visible flow of cause and effect.

6.4.2 Select a starting point

Every Design-Level EventStorming begins with a conscious delimitation. The
scope should be small enough to go into depth within a workshop, but large
enough to tell a coherent technical story. Typical starting points are a subdomain,
a bounded context, or the area between two pivotal domain events from a big

picture workshop.

The starting point is made visible on the board and is usually a central event
or decision. It marks the boundary of the exploration: from here, we want to
understand how we get from one business state to the next.

The goal of this first phase is clarity, not completeness.

6.4.3 Chaotic exploration of rules

Once the scope has been set, it’s time to focus on the functional specifics. Which
rules determine how the system behaves? These rules are at the heart of the
workshop. They are collected on large yellow sticky notes, usually freely and
without any particular order.

Each rule describes a condition, criterion, or decision that is essential to the
functionality. It is formulated in everyday domain language, without resorting to
technical terms. The rule here is: it is better to collect too many rules than to

structure them too early.
The board should make thinking visible, not enforce order.

At this point, an initial connection to test-driven development can already be
established. Each rule noted on a yellow sticky note can be considered a test
hypothesis. In early implementation, this can result in a unit test that checks

whether this rule is fulfilled in the code. In this way, a workshop artifact becomes
a building block of technical quality assurance.

6.4.4 Grouping the rules - making consistency boundaries
visible

Once enough rules have been collected, the structuring phase begins. The rules
are now grouped according to the criterion of which ones must always remain
consistent with each other. These groups represent functional consistency bound-
aries. They are what is later referred to as aggregates in tactical DDD, but here they
are more consciously described as consistent rule sets.

Grouping is not a mechanical step, but rather an in-depth discussion. Subject
matter experts and developers compare their mental models: Which rules belong
together from a subject matter perspective? Which ones are dependent on each
other? Which ones can exist independently of each other?

At this point, the perspective shifts from loose rules to system logic. The resulting
groups are semantic units. They form the core of what will later be implemented
in the domain layer as aggregate roots, entities, and value objects. Their names
are crucial, they become elements of the ubiquitous language and should appear
unchanged in the code later on.

6.4.5 Adding Commands and Events

Once the grouped rules are in place, they are linked to interaction. The question
is: How is this rule triggered, and what happens when it is executed?

The answers lead to commands and domain events. A command is an action, a
call that activates a rule. An event is the observation of the result. Commands are
written on blue sticky notes, events on orange sticky notes, and attached directly
to the corresponding rule groups.

This creates the backbone of the model: a sequence of causes and effects, a story
that shows the business logic in motion.

For test-driven development, this means that every combination of command and
event becomes a test case. A test describes the expected effect of a business call:
“When command X is executed, event Y occurs.” The test cases document the
behavior of the aggregates and thus the behavior of the system.

6.4.6 Policies and Read Models - wiring the system

The final step is to connect the system. Now it’s all about the flow of reactions:
how individual parts of the domain interact with each other. This is where policies
and read models come into play.

Policies describe orchestrating rules that respond to events. They connect events
with new commands in an if (event), then (commands) semantics. When a spe-
cific event occurs, a functional response is automatically triggered. This response
can be synchronous or asynchronous, internal or cross-functional, but it is always
an expression of a business rule. In later architecture, policies are often candidates
for application or domain services.

Read models, on the other hand, are the perspective of evaluation. They are not
used for control, but for observation. A read model projects domain events into a
form that is understandable for users or external systems such as a map, a report,
a display. They can also play an exciting role in CQRS-based architectures.

At the end of this phase, the board is a complete, functionally coherent repre-
sentation of the context. All aggregates, commands, events, policies, and read
models are interconnected. The system has a recognizable topology: a network
of meaning, responsibility, and communication.

6.4.7 Result - A system that explains itself

A successful Design Level EventStorming does not end with a colorful board, but
with a shared understanding. Participants have not only gathered rules, but also
learned how these rules are translated into architecture, code, and language. The
resulting systems are thus more understandable, testable, and expandable. They

are not based on assumptions, but on verified meaning. This combination of work-
shop, test, and architecture reveals the true strength of tactical Domain-Driven
Design: it combines thinking, acting, and developing into a coherent practice.

6.5 Summary and outlook

Tactical Domain-Driven Design is the art of translating domain expertise into
structure. It combines the building blocks of the model with architectural prin-
ciples and practical methods to form a coherent whole. The patterns—entities,
value objects, aggregates, domain events, services, repositories, and factories—
are the basic vocabulary of this language. Architectures such as layered, hexagonal,
CQRS, or event sourcing are its grammar, and deployment options are its forms
of expression.

Those who practice DDD at the tactical level build software that speaks the
language of the domain. The goal is not code that merely works, but a system
that is understood, evolves with the domain, and accepts change as part of its
nature. Tactical DDD is therefore not the end of architecture, but its living core:
the constant translation of knowledge into design, design into code, and code back
into shared understanding.

7 Conclusion: Do's and Don'ts in
Domain-Driven Design

Domain-driven design is not a dogma, but rather an attitude that shapes thinking,
collaboration, and architectural decisions. Nevertheless, there are typical pitfalls
that almost every team experiences at some point and equally typical success
factors that determine whether a project or product will be successful. This
concluding chapter summarizes the most important dos and don’ts as a hands-

on guidance for practitioners.

7.1 Business first, technology later

DDD always starts with the problem space. If you jump too quickly into frame-
works, technologies, or architecture diagrams, it’s easy to lose sight of the actual

»

“why.
Do

Start with the domain: customer needs, business processes, goals, value propo-
sitions.

Utilize collaborative modeling workshops such as EventStorming or Domain
Storytelling to gain a shared understanding of what is truly relevant.

Use helpers such as the Bounded Context Design Canvas to consciously draw

functional and technical boundaries.
Don’t

Don’t get carried away by hype technologies or “best practices.”

Don’t split up bounded contexts along technical layers (e.g., “front-end con-
text,” “back-end context”).

Don’t confuse “code structure” with “domain structure.”

7.2 Take the ubiquitous language
seriously

Ubiquitous language is the central anchor between business and technology. It
arises in conversations, not in code generators.

Do

Consistently use the terminology of experts in code, tests, and documentation.
Keep terms visible, for example, on the bounded context canvas or in glos-
saries.

Question ambiguous or overloaded terms (“customer,” “application,” “case,”
etc.).

Don’t

Automatically translate domain terminology into technical synonyms (“Cus-
tomerDTO,” “ClientEntity”).

Use multiple competing languages in a bounded context.

Leave decisions about terms uncommented, they are deliberate decisions.

7.3 Design models in a collaborative way

Good models are created through dialogue, not by working alone.

Do

Plan regular, short modeling sessions, not just big one-off workshops.
Visualize: whiteboard, Miro, sticky notes.

Keep models alive. They are tools for thinking, not artifacts for archiving.
Combine Big Picture EventStorming for overview with Design Level EventStorm-
ing for detailed work.

Don’t

Hand models over as “finished” from one stakeholder to the next.

Let meetings degenerate into lectures. Everyone should be allowed to stick,
write, and move things around.

Hide models in highly specialized tools.

7.4 Draw small, coherent boundaries

Abounded context is as large as what can be described in a consistent language.

Do

Split contexts based on functional cohesion, not based on existing teams,
technologies, or databases.

Keep cohesion high and coupling low.

If there are too many rules or terms, check whether the context has become
too large.

Don’t

Create “mega contexts” that contain everything and generalize a lot.
Centralize data models (“business partners,” “master data”) without a clear
functional purpose.

Couple contexts via shared databases, use Published Language or Events instead.

7.5 Think and learn iteratively
DDD is a learning process. Models mature, boundaries shift, language changes.

Do

Work in small evolutions instead of big bang refactorings.

Use TDD to gradually translate rules into code.

Document open questions and assumptions (“Assumptions,” “Open Ques-
tions”) visibly on the bounded context design canvas.

Reflect regularly: Do our models still correspond to reality?

Don’t

Search for “the perfect model right away” - the first iteration can only ever
have the quality rating “they always tried very hard.”

Wait with implementation until everything seems clear, learning happens
through doing.

See refactoring as error correction, it is a central part of learning.

7.6 Designing technical resilience

Software is never error-free but it can be resilient if business logic is deliberately
decoupled.

Do

Implement “graceful degradation”: systems should continue to provide valu-
able responses even in the event of partial failures.

Decouple subdomains using domain events and policies instead of
synchronous call chains.

Practice how failures or delayed events affect business processes.
Don’t

Build rigid dependencies between contexts (“This one calls that one, which
calls the other one”).
Hide errors behind technical retries, understand their functional significance.

7.7 Adapt architectures to the problem

Patterns are utilities, not laws.

Do

Select architectural styles (monolith, hexagon, microservice, event-driven)
based on context.
In core domains: high quality, in-house development, test-driven models.

In generic domains: custom of the shelf software, SaaS, or low-code is often
sufficient.

Don’t

Use hexagonal architecture because it sounds fashionable.

Pursue microservices when team size, quality requirements or business logic
do not justify them.

Abuse patterns as an end in themselves.

7.8 Make responsibility visible

DDD is socio-technical: architecture and organization must fit together.

Do

Align teams along bounded contexts (Team Topologies: Stream-aligned
Teams).

Make upstream/downstream relationships explicit (Context Map).
Clarify ownership before defining interfaces.

Don’t

Hide team dependencies behind technical APIs.

Expect architecture alone to solve organizational problems.

Ignore communication channels: they shape software just as much as code
(Conway’s Law).

7.9 Maintain pragmatism
DDD requires discipline, but also a healthy dose of common sense.

Do

Use DDD where complexity and added value are high (core domain).
Keep things lightweight in supporting and generic areas.
Use DDD vocabulary as a thinking tool, not as a label.

Don’t

Use “full DDD” everywhere.
Discuss pattern orthodoxy instead of business value.
Confuse creating complexity with mastering complexity.

710 Summary

Domain-Driven Design is not a recipe book, but rather a continuous dialogue

between domain expertise and engineering. Those who take the dos and don’ts

described here to heart lay the groundwork for this: a language that connects,

models that make sense, and architectures that allow for change.

Ultimately, DDD is not a goal, but a daily practice. Those who live it learn how

models create value: not through dogma, but through understanding, collabora-

tion, and continuous improvement.

8 Sources and references

DDD Crew on GitHub: https://www.github.com/ddd-crew

Brandolini, Alberto (2015): Introducing Event Storming, Leanpub https://leanpu
b.com/introducing_eventstorming

Dahan, Udi: Clarified CQRS http://udidahan.com/2009/12/09/clarified-cqrs/
Domain Storytelling Homepage: http://www.domainstorytelling.org/
Evans, Eric (2003): Domain-driven Design, Addison Wesley

Evans, Eric (2016): Model Exploration Whirlpool https://domainlanguage.com/d
dd/whirlpool/

Khononov, Vlad (2021): Learning Domain-Driven Design, O’Reilly
Manifesto for Agile Software Development https://agilemanifesto.org/

Patton, Jeff (2014): User Story Mapping: Discover the Whole Story, Build the Right
Product, O’Reilly and Associates

Principles behind the Agile Manifesto https://agilemanifesto.org/principles.ht
ml

Stevens, Meyers, Constantine (1974): Structured Design https://dl.acm.org/doi/1
0.5555/1241515.1241533

Vaughn, Vernon (2013): Implementing Domain-driven Design, Addison Wesley

https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
http://udidahan.com/2009/12/09/clarified-cqrs/
http://www.domainstorytelling.org/
https://domainlanguage.com/ddd/whirlpool/
https://domainlanguage.com/ddd/whirlpool/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://dl.acm.org/doi/10.5555/1241515.1241533
https://dl.acm.org/doi/10.5555/1241515.1241533

9 About us

Q

INNOQ is a technology consulting company. Honest consulting, innovative think-
ing, and a passion for software development means: We deliver successful soft-
ware solutions, infrastructure and products.

We specialize in the following areas:

Architecture Strategy

Software Architecture and Development
Data & Al

IT Security

Development of Digital Products

Digital Platforms and Infrastructures
Knowledge Transfer, Coaching and Trainings

With around 150 employees across offices in Germany and Switzerland, we sup-
port companies and organizations in designing and implementing complex initia-

tives and in improving existing software systems.

We are actively involved in open-source projects and the iSAQB® e.V., and we
share our knowledge and experience at conferences and meetups, as well as
through numerous books and professional publications.

Visit us at www.innoq.com

About the author

Michael Plod

Michael is a Fellow at INNOQ. His current areas
of focus are Domain-Driven Design, Team Topolo-
gies, socio-technical architectures, and the trans-
formation of IT organisations towards collabora-
tion and loosely coupled teams. Michael is the au-

thor of the book “Hands-on Domain-driven Design
- by example” on Leanpub, translator of the book
Team Topologies into German for O’Reilly, contrib-
utor/committer for DDD-Crew on GitHub, and a
regular speaker at national and international confer-

ences.

This primer provides a systematic overview of modern
DDD. From collaborative modeling techniques such as
Event Storming to strategic patterns such as Bounded
Contexts to tactical implementation patterns. We
show how DDD acts as a bridge between business and
technology, what pitfalls lurk in practice, and how the
approach connects with current trends such as data
mesh or Al-driven domains.

For software architects, developers, product owners,
and anyone who wants to understand and design
complex software systems. Compact, practical, and
up to date with the latest developments in the DDD
community.

innoq.com

	1 Introduction
	1.1 Why a comprehensive overview?
	1.2 Overview of the contents of the primer
	1.3 Purpose of this primer

	2 DDD as a way of working and a mindset
	2.1 Introduction
	2.2 Domain-Driven Design as a way of working
	2.3 Attitude: The mindset behind Domain-Driven Design
	2.4 The relationship to agility
	2.5 Practical implications
	2.6 Challenges in its practical application
	2.7 Opportunities and added value
	2.8 Conclusion

	3 Guiding approaches in the DDD environment
	3.1 Modeling as a cycle: The Model Exploration Whirlpool
	3.2 Getting started step by step: The DDD Starter Modeling Process
	3.3 Whirlpool and Starter Process in interaction
	3.4 Outlook: Our point of reference in the rest of the primer
	3.5 Conclusion

	4 Collaborative Modeling
	4.1 Introduction & Principles
	4.2 Align phase: Business Model Canvas and Value Proposition Canvas
	4.3 Discover Phase: Big Picture EventStorming
	4.4 Discover Phase: Domain Storytelling
	4.5 Conclusion

	5 Strategic Domain-Driven Design
	5.1 Problem- and Solutionspace
	5.2 Domains and Subdomains
	5.3 Strategic Classification
	5.4 Bounded Contexts
	5.5 Working with the Bounded Context Design Canvas
	5.6 Socio-technical alignment
	5.7 Conclusion

	6 Tactical Domain-Driven Design
	6.1 Tactical Patterns
	6.2 Architectural Patterns
	6.3 Deployment Options
	6.4 Design-Level EventStorming - From the model to the implementation
	6.5 Summary and outlook

	7 Conclusion: Do's and Don'ts in Domain-Driven Design
	7.1 Business first, technology later
	7.2 Take the ubiquitous language seriously
	7.3 Design models in a collaborative way
	7.4 Draw small, coherent boundaries
	7.5 Think and learn iteratively
	7.6 Designing technical resilience
	7.7 Adapt architectures to the problem
	7.8 Make responsibility visible
	7.9 Maintain pragmatism
	7.10 Summary

	8 Sources and references
	9 About us
	About the author

