
@bitboss#VoxxedBerlin

Platinum Sponsor

Caching for Business
Applications:  

Best Practices and Gotchas
Michael Plöd

innoQ Deutschland GmbH

I will talk about
Caching Types / Topologies

Best Practices for Caching in Enterprise Applications

I will NOT talk about
Latency / Synchronization discussion

What is the best caching product on the market
HTTP / Database Caching

Caching in JPA, Hibernate or other ORMs

Cache
/ kæʃ /
 
 
In computing, a cache is a component that transparently stores data so that future requests
for that data can be served faster. The data that is stored within a cache might be values that
have been computed earlier or duplicates of original values that are stored elsewhere. If
requested data is contained in the cache (cache hit), this request can be served by simply
reading the cache, which is comparatively faster. Otherwise (cache miss), the data has to be
recomputed or fetched from its original storage location, which is comparatively slower. Hence,
the greater the number of requests that can be served from the cache, the faster the overall
system performance becomes.

Source: http://en.wikipedia.org/wiki/Cache_(computing)

http://en.wikipedia.org/wiki/Cache_(computing)

That’s awesome. Let’s cache everything
and everywhere and distribute it all in

a Cluster in a transactional manner
ohhh by the way: Twitter has been

doing that for ages

Are you
crazy?

Business-Applications

!= 
Twitter / Facebook & co.

Many enterprise grade projects
are adapting caching too

defensive or too offensive and are
running into consistency or

performance issues because of
that

But with a well adjusted caching
strategy you will make your

application more scalable, faster
and cheaper to operate.

CACHESTypes of  

Places for

Local Cache, Data Grid, Document Store, JPA
First Level Cache, JPA Second Level Cache,

Hybrid Cache

Database, Heap, HTTP Proxy, Browser,
Prozessor, Disk, Off Heap, Persistence-

Framework, Application

We will focus on local and
distributed caching at the

application level with the Spring
Framework

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How do I abstract my
cache implementation?

1 Identify suitable layers for
caching

ComplaintManagementRestController

ComplaintManagementBusinessService

DataAggrgationManager

Host
Commands

SAP
Commands

Spring Data
Repository

HTTP
Caching

Read
Operations

Read
Operations

Read
Operations

Read
Operations

Read and
Write

Operations

Suitable
Layers

for 
Caching

2 Stay local as long as possible

Lokal In-Memory

JVM

Cache

Clustered
JVM

Cache

JVM

Cache

JVM

Cache

JVM

Cache

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How about caching in
Spring?

JVM

JVM

JVM

JVM

Clustered - with sync

Cache

Cache

Cache

Cache

Invalidation

Replication

3 Avoid real replication where
possible

Cache

Cache

Cache

Cache

Invalidation - Option 1

#1PUT
(Insert)

PUT
(Insert)

#1

#1PUT
(Insert)

PUT
(Insert)

#1

Cache

Cache

Cache

Cache

#1 #1

PUT
(Update)

#1inv #1#1

Invalidation - Option 1

Cache

Cache

Cache

Cache

Invalidation - Option 2

#1PUT
(Insert)

PUT
(Insert)

#1

#1PUT
(Insert)

PUT
(Insert)

#1

Cache

Cache

Cache

Cache

#1#1#1

Replication

#1PUT
(Insert)

PUT
(Update)

#1

As of now every cache could
potentially hold every data which

consumes heap memory

Big Heap

?

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How about caching in
Spring?

4 Avoid big heaps just for caching

Big heap
leads to long
major GCs

Application
Data

Cache

32
 G

B

Long GCs can destabilize your
cluster

JVM

Cache

JVM

Cache

JVM

Cache

JVM

Cache

GC

GC

Small caches
are a bad idea!

Many evictions, fewer hits,
no „hot data“. 

 
This is especially critical for

replicating caches.

5 Use a distributed cache for
big amounts of data

Distributed Caches
JVM

JVM JVM

JVM

Cache Node

1

Cache Node

2

Cache Node

3

1
Customer

#23
Customer

#30

Customer
#27

Customer
#32

2

1 2
Customer

#23
Customer

#30
Customer

#27
Customer

#32

BACKUP
#27

BACKUP
#32

BACKUP
#23

BACKUP
#30

Data is being
distributed and

backed up

1 2
Customer

#23
Customer

#30
Customer

#27
Customer

#32

BACKUP
#27

BACKUP
#32

BACKUP
#23

BACKUP
#30

3

3

1 2
Customer

#23

Customer
#30

Customer
#27

Customer
#32

BACKUP
#27

BACKUP
#32

BACKUP
#23

BACKUP
#30

4

43

1 2
Customer

#23

Customer
#30

Customer
#27

Customer
#32

BACKUP
#27

BACKUP
#32

BACKUP
#23

BACKUP
#30

A distributed cache leads to
smaller heaps, more capacity and

is easy to scale

Application
Data

Cache

2
- 4

 G
B

… Cache

6 The operations specialist is
your new best friend

Clustered caches are
complex. Please make
sure that operations
and networking are
involved as early as

possible.

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How about caching in
Spring?

7 Make sure that only suitable
data gets cached

The best cache candidates are
read-mostly data, which are

expensive to obtain

If you urgently must cache write-
intensive data make sure to use a

distributed cache and not a
replicated or invalidating one

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How about caching in
Spring?

8 Only use existing cache
implementations

NEVER
write your own cache

implementationEVER

CACHE 
Implementations

Infinispan, EHCache, Hazelcast, Couchbase,
Memcache, OSCache, SwarmCache, Xtreme

Cache, Apache DirectMemory

Terracotta, Coherence, Gemfire, Cacheonix,
WebSphere eXtreme Scale, Oracle 12c In

Memory Database

Which data shall I
cache?

Where shall I cache?

Which cache shall I use?

Which impact does it have on my
infrastructure

How about data-consistency

How do I introduce
caching?

How about caching in
Spring?

9 Introduce Caching in three
steps

Optimize your
application

Local Cache Distributed Cache

Performance
Boost

Performance
Loss

10 Optimize Serialization

Example: Hazelcast 
putting and getting 10.000 objects locally

GET Time PUT Time Payload Size

Serializable ? ? ?

Data 
Serializable ? ? ?

Identifier 
Data 

Serializable
? ? ?

Example: Hazelcast 
putting and getting 10.000 objects locally

GET Time PUT Time Payload Size

Serializable 1287 ms 1220 ms 1164 byte

Data 
Serializable 443 ms 408 ms 916 byte

Identifier 
Data 

Serializable
264 ms 207 ms 882 byte

JAVA
SERIALIZATION 
SUCKS

for Caching if alternatives are present

11
Use Off-Heap Storage for
Cache instances with more
than 4 GB Heap Size

JVM

Cache Runtime

Cache
Data

32
 G

B
H

EA
P

Off Heap

30
 G

B
RA

M

JVM

Cache Runtime

Cache
Data

2
G

B
H

EA
P

No Garbage Collection

Very short Garbage
Collections

12 Mind the security gap

Application

„CRM“ „Host“ DB

SecuritySecuritySecurity

Cache
CRM Data

SAP Data

DB Data
?

Mind security when reading
data from the cache

13 Abstract your cache
provider

public Account retrieveAccount(String accountNumber)
{
 Cache cache = ehCacheMgr.getCache(„accounts“);
 Account account = null;
 Element element = cache.get(accountNumber);
 if(element == null) {
 //execute some business logic for retrieval
 //account = result of logic above
 cache.put(new Element(accountNumber, account));
 } else {
 account = (Account)element.getObjectValue();
 }
 return account;
}

Tying your code to a cache provider is bad practice

public Account retrieveAccount(String accountNumber)
{
 Cache cache = ehCacheMgr.getCache(„accounts“);
 Account account = null;
 Element element = cache.get(accountNumber);
 if(element == null) {
 //execute some business logic for retrieval
 //account = result of logic above
 cache.put(new Element(accountNumber, account));
 } else {
 account = (Account)element.getObjectValue();
 }
 return account;
}

Try switching from EHCache to Hazelcast

You will
have to

adjust these
lines of code

to the
Hazelcast

API

public Account retrieveAccount(String accountNumber)
{
 Cache cache = ehCacheMgr.getCache(„accounts“);
 Account account = null;
 Element element = cache.get(accountNumber);
 if(element == null) {
 //execute some business logic for retrieval
 //account = result of logic above
 cache.put(new Element(accountNumber, account));
 } else {
 account = (Account)element.getObjectValue();
 }
 return account;
}

You can’t switch cache providers between
environments

EHCache is
tightly

coupled to
your code

public Account retrieveAccount(String accountNumber)
{
 Cache cache = ehCacheMgr.getCache(„accounts“);
 Account account = null;
 Element element = cache.get(accountNumber);
 if(element == null) {
 //execute some business logic for retrieval
 //account = result of logic above
 cache.put(new Element(accountNumber, account));
 } else {
 account = (Account)element.getObjectValue();
 }
 return account;
}

You mess up your business logic with
infrastructure

This is all
caching

related code
without any

business
relevance

<cache:annotation-driven cache-manager="ehCacheManager"/>

<!-- EH Cache local -->
<bean id="ehCacheManager"  

class="org.springframework.cache.ehcache.EhCacheCacheManager"
 p:cacheManager-ref="ehcache"/>

<bean id="ehcache"  
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"
p:configLocation="/ehcache.xml"/>

@Cacheable("Customers")
public Customer getCustomer(String customerNumber) {

…
}

Introducing Spring’s cache abstraction

Spring vs JCache Annotations

Spring JCache Description

@Cacheable @CacheResult Similar, but @CacheResult can cache Exceptions and force
method execution

@CacheEvict @CacheRemove Similar, but @CacheRemove supports eviction in the case of
Exceptions

@CacheEvict 
 (removeAll=true) @CacheRemoveAll Same rules as for @CacheEvict vs @CacheRemove

@CachePut @CachePut
Different semantic: cache content must be annotated with

@CacheValue. JCache brings Exception caching and caching
before or after method execution

@CacheConfig @CachePut Identical

@bitboss#VoxxedBerlin

Platinum Sponsor

Thank You!
Michael Plöd

innoQ Deutschland GmbH

@bitboss
https://slideshare.net/mploed

https://slideshare.net/mploed

