y '% Eberhard Wolff
! ; @ewolff

" ... Microservices -

/

8 . After the Hype







Eberhard Wolff A PRACTICAL GUIDE TO

Continuous
: NTIN
Delivery C OD LIy E&U S

Der pragmatische Einstieg

EBERHARD WOLFF

www.continuous-delivery-buch.de www.continuous-delivery-buch.de




Eberhard Wolff _('h ;

Microservices — ,
Grundlagen flexibler Softwarearchitekturen M I C r O S e r V I C e S . . . .
FLEXIBLE SOFTWARE ARCHITECTURE Mlcroseerces Ml.croserVIces
Primer
dpunktverlag EBERHARD WOLFF IhNO IlNO

microservices-buch.de/ microservices-book.com/
veberblick.html primer.html

microservices-buch.de microservices-book.com




Da._S Eberhard Wolff .
Microservices-

Praxisbuch | Microservices Microservices
Grundlagen, Konzepte und Rezepte : Rezepte Recipes

dpunkt.verlag o Imo Imo

microservices-praxisbuch.de/ practical-microservices.com/
rezepte.html recipes.html

microservices-praxisbuch.de practical-microservices.com




\ |

Service Mesh

AL

leanpub.com/service-mesh-primer/




INNO

Eric Evans

Domain-
Driven
Design
Referenz

Definitionen & Muster

Ubersetzt von
Michael Pl&d
Christian Stettler
& Eberhard Wolff

www.ddd-referenz.de

www.domainlanguage.com/ddd/reference




Hype Cycle
2015

2019

2011



Hype Cycle & Projects

 There are just advantageous decisions
...and not so great decisions
...for a specific project



Hype Cycle & Projects
 Why care about hype cycles?

 Why use cool stuff if it doesn’t help your
project?

 Why skip uncool stuff if it solves your
problem?



DON'T BELIEVE THE HYPE

8337









Life Before Microservices

Deployment monoliths

Several million lines of code
Compilation time: hours

Start-up time: many minutes

Complex integration with other systems

Votes: Who ever had too large / small
deployment units?



Wikipedia: History of Microservices

Software
architecture
workshop

2077: common
architectural style

2012 Coined the
term "microservice”




Adrian Cockcraft
e Architecture at Netflix

* "Fine grained SOA"
 Cloud

* High scalability
* |Independent teams




James Lewis

2012 Presentation "Java
the Unix Way"

* Scale to many developers

 Tough non-functional
requirements
(performance, scalability)

* |Implement Unix services
in Java, REST




Fred George

Diverse projects

Tiny services
Asynchronous
communication
Developer anarchy
Delivered many projects




Microservices: The Beginning

* Different, senior people

* Significant projects

* Solve similar problems
(e.g. scaling projects)

* ...but also specific problems
(i.e. functional requirements, cloud)

* Diverse technologies & principles
(sync/async, small/large microservices)















Deployment Monolith

Module Module

Desired Architecture



Deployment Monolith

Module

Module Module

Module

Deployment Monolith




Dependencies
Deployment Monolith sneak in

Module

Module Module

Module

Deployment Monolith




Microservices

Module Module

Desired Architecture



Microservices

Module Module

Process / network
boundaries



Deployment Monolith: Dev

Module Module




Deployment Monolith: Ops

Deployment Monolith



Microservices: Dev

Module Module




Microservices: Ops




Modules & Microservices
 Strong boundaries between modules
* Modules not just for developers

e ...but also for communication and
deployment



Modules & Microservices

e Modules more obvious

 Modules harder to change
* Modules became important again! /4

* Modular Monoliths



Modular Monoliths

e Architecture monolith: no modules

 Deployment monoliths may have
modules

 Deployment monoliths should have
modules!

 Hardly surprising



Modular Monoliths

* |f microservices hype helps to understand
modules, great!

* Why are so many deployment monoliths
badly structured???









Again: Architecture

* Find a solution for the problem at hand!

Microservices: just one tool

Microservices: just one part of a solution

Why exclude microservices up-front?
Why microservices in a specific case?






Understanding DDD 2005

* An OO paradigm

e Classes will be
repositories, services,
entities, aggregates

* |.e. fine-grained concepts

Photo: Konstantin Stepanov



Understanding DDD 2019

 Coarse-grained modules

 Bounded context

* Strategic design

 Core domain / generic
subdomain

Photo: Bill Smith



Architecture

Modules important again /3
DDD renaissance /A
Coarse grained decoupling /3

Microservices: new type of modules
Fundamental!

But: microservices just one option






GLOBAL TEMPERATURE SINCE THE LAST ICE AGE

12100
a4 You are here
=)
> 17
= -
£ 120 meters 1.1°C
(=] X in 100
E 0 - sea-level rise pasit
= i
o z .
) -1 - 1 °C warming
=
L
<D o
-3 - (1150
- years Shakun et al. Nature 2012
= Marcott et al. Science 2013
_4 T T T T T
-20000 -16000 -12000 -8000 -4000 0 4000

http://www.realclimate.org/index.php/archives/2013/09/paleoclimate-the-end-of-the-holocene/
https://twitter.com/rahmstorf/status/1186963006640545792




Long-term Architecture

* Many systems survive very long.
* |s "clean” architecture enough?

* How to avoid architecture rot?

* How many successfully avoided it?

 Enforce architecture strictly?
 With self-organization?



Long-term Architecture

* Which decision
survive many years?

* How can you predict
the future?

* Crystal ball?

Photo: Carlos Ebert



Long-term Architecture: Structure
« DDD's Bounded Context might be stable
 Capture essence of business

* Probably the same in a few years

* |f essence of business changes,
software is probably your least concern.



Long-term Architecture:
Technologies

 Today's fancy new technology

... will be outdated sooner or later.

* Security fixes often only in latest releases
* Need to be up-to-date

» Large, risky technology updates (%)






Modular Synthesizer

« Communication:
control, trigger

 Deployment:
Module sizes,
power

Photo: Muff, Flickr



Modular Synthesizer

 Since 1996

¢ >5,000 module

 Many, very
different modules

Photo: Muff, Flickr



Microservices

« Communication:
REST, messaging etc.

 Deployment:
Container, ops interface

 Hide internal technologies
* |Information hiding



Long-term Architecture:

Technologies

* Microservices allow heterogeneous
technology stacks

 Support updates to new technologies
...stepwise by microservice
...to mitigate risk

* Microservices only option for long-term
architecture?



Long-term Architecture: Conclusion

« DDD: stable coarse-grained split /&
* Architecture rot is hard to avoid.

 Clean architecture less important

* Plan for heterogeneous technologies /A
 Microservices only option to do this?






The 2019 Accelerate State of DevOps:
Elite performance, productivity, and
scaling

https://cloud.google.com/devops/state-of-devops/



ACCELERATE

Buﬂdmc and Scahng ngh Performmc
Technology Orgamzatlons

Nicole Forsgren, PhD
Jez Humble, and Gene Kim

Martln Fowler o Courtney Kissler
iy Steve Bel[ f Karen Whitley Bell




Deployment Frequency: Results

Elite Performers vs. Low Performers
Multiple times per day vs. once per month /6 months

106x better lead time for change

2.604x better time to restore service

/x better change failure rate

50% vs 30% time spent on new work (2018 report)

Less work on security issues, bugs, end user support
(2018 report)






Customer Scenario

* Quarterly releases

* 10 weeks of testing

 Release two days over the weekend

T me

Release

 Goal: Several deployments a day

Testing + Release + Development



Customer Scenario: Automation

Testing

Release

 Development faster — smaller batches

« Assumption: Test automation =
100x speedup for test

e 4h Tests



Customer Scenario: Automation

Testing

Release

 Assumption: Deployment automation =
4x speedup

 2h Deployment



Customer Scenario: Automation

Testing

Release

 2h Deployment + 4h tests
= 6 hours
= 1T deployment per day
Need another threefold improvement



Solution
* |Independently deployable modules
aka microservices

e Other solutions?



Open Challenges

« Complete environment for each dev
 Too hard to keep updated

* Proper modularization: not necessary



Invoice

Search

Continuous Delivery

Pipeline

Continuous Delivery
Pipeline

Continuous Delivery
Pipeline

Integration
Tests

Production




Continuous Delivery
Pipeline

Continuous Delivery ' Integration

Pipeline v Tests

_

Production

Invoice

Order

Continuous Deliver
Search y

Pipeline






Proper domains
Stubs

Consumer-driven
contract tests

Continuous Delivery

Invoice o
Pipeline

Continuous Delivery Integration
Pipeline Tests

Production

Continuous Delivery
Pipeline

Search



Continuous Delivery: Conclusion

Continuous delivery gives many benefits

Microservices
= independently deployable modules

Microservices solve some continuous
delivery challenges

Should be considered

CD: important reason for microservices










2

Change

Order
Process! Backend

B 11

E Commerce
Shop




3 sprints

DB
Team Sprint

Backend

Team Sprint

Ul
Team Sprint

time



Inverse Conway Maneuver
* Let architecture drive the organization
 Team for each bounded context



Microservices & Inverse Conway

Order Billing Search

=z e
4

Microservice Microservice Microservice
< >

< > < >
Technical Technical Technical

Coordination Coordination Coordination

Deployment Deployment Deployment



Independent Teams

Architecture supports independent teams

Do you trust teams to make the right
decisions?

Must teams communicate decisions?
When do you step in?
But really: culture / org problem






Org & Architecture: DDD

 Bounded context = team
* Strategic design: How teams interact



Org & Architecture: Agile

e Cross-functional teams
* Self-organizing teams

e Architecture?



Org & Architecture: Accelerate

¢ Recommendation based on e SOENGE D EAN

empiric study ACCELERATE

T h | gyo g anizations

* Loose coupling to scale team ;
* Allow teams to choose tools __

 Focus on developers and p—
results y
..not tools or technology Jeyggjgbﬁgfsggegefgﬁ,m

f /s by Martin Fowler « ney K
) rtributed by Bell f Karen Whitley Bell



The Importance of Org: Accelerate

 Microservices support R ERATE
iIndependence Bgc CE g

 There might be
alternatives, though

Nicole Forsgren, PhD
Jez Humble ~fGene Klm

owlel ney K
ve Bell Karen Whitley Bell




Conclusion: Culture & Organization
 Organization: architecture tool
* Architecture should drive organization

« Conway's Law 1968

 Domain-driven Design 2005
* Agile
 Accelerate 2019



Conclusion: Culture & Organization

e Microservices made idea popular. /4
* Microservices: more independence. /5

* No Focus on tools or technology
...but developers and results.
 Microservice: Just another (great!) tool












Challenges with Microservices

 Operations
* |nfrastructure
* Visibility



When | Started with Microservices

* Virtual machine per service
e Lots of resource

 Hard to run locally
 Monitoring: not dynamic enough
* Log collection: only in prod due to cost



New Technologies: Platform

. _

* Docker

e Kubernetes -ﬁ-
e Service Mesh

e Paa$S

e Serverless




New Technologies: Operation

 Monitoring (e.g. Prometheus)
* Logging (Elastic, too many to mention)

y

© -

 Visualization (Kiali)




New Technologies

 "But these are complex!"

* Are the old virtualization and monitoring
systems trivial?

* Operations remains a challenge
might block you from microservices.






Technologies: Developer Tools

: (Sgl:;(:i:g/ II;/Ioo’c G ra a lVM

* Too many microservices frameworks
to mention all...



Technology & Complexity

Lots of innovation
Containers
Serverless, Paa$S
Microservices tools

Will technology eliminate the complexity?






Conclusion

Microservices = Hype

Renaissance of modules and DDD
_ong-term architecture

Help with continuous delivery
Established org as architecture tool
Profit from innovation









