
Rails Engines.
Doing it wrong. And then right.

@mrreynolds

Why Engines?

Extend your app with reusable
models, controllers, views,
helpers, routes, locales and
tasks.

It‘s an app
within

an app.

Rails::Engine < Rails::Railtie

What‘s a Railtie?

• Core of the framework

• Provides hooks to extend Rails

• ActiveRecord, ActionController
etc. are all Railties

What is an

Engine then
?

It‘s just a Railtie
with some
defaults.

Typical cases

• CMS

• Admin Frontend

• Translation Frontend

Our problem

• Build a vocabulary and
thesauraus management system

• Adjust and extend it for every
customer without forking it

github.com/innoq/iqvoc

First approach

• iQvoc as main app

• Vendor logic as engine

The problem

• Could not act as a standalone app

• Always had to be plugged into a
main app

Second approach

• Vendor logic as main app

• iQvoc as engine (and app)

The problem

• A Rails 3.0 Engine can not act as
a standalone app by default
(requires customization)

• No out-of-the-box support for
migrations, assets etc.

Options

Wait for Rails 3.1

Just hack it.

What
do you need?

Act as an engine…

lib/engine.rb
module Iqvoc

 class Engine < Rails::Engine
 end

end

…only if we want to

 # config/initializers/iqvoc.rb
 unless Iqvoc.const_defined?(:Application)
 require File.join(File.dirname(__FILE__), '../../lib/engine')
 end

config/application.rb
module Iqvoc
 class Application < Rails::Application

Up next:
Engine tasks

lib/engine.rb
class Engine < Rails::Engine

 paths.lib.tasks << "lib/engine_tasks"

Only available when app

is mounted as an engine!

What about

Migrations?

namespace :iqvoc do
 namespace :db do

 task :migrate => :environment do
 ActiveRecord::Migration.verbose = ENV["VERBOSE"] ? ENV["VERBOSE"] == "true" : true
 path = Iqvoc::Engine.find_root_with_flag("db").join('db/migrate')
 ActiveRecord::Migrator.migrate(path, ENV["VERSION"] ? ENV["VERSION"].to_i : nil)
 Rake::Task["db:schema:dump"].invoke if ActiveRecord::Base.schema_format == :ruby
 end

 end
end

Rails 3.1

rake railties:copy_migrations

Routes

Foo.application.routes.draw do

Rails.application.routes.draw do

Rails 3.1

Main app
Rails.application.routes.draw do
 mount Foo::Engine => "/foo"
end

Engine
Foo::Engine.routes.draw do
…

Rails 3.1
Namespace isolation

module MyEngine
 class Foo < Rails::Engine
 isolate_namespace Foo
 end
end

Separate routers for each Engine
foo.root_path
main_app.root_path

If you isolate,

don‘t forget
to move things.

app/controllers/foo/things_controller.rb
app/views/foo/things/new.html.erb
…

Assets

 task :link do
 Iqvoc.for_static_folders do |source_common_dir, target_common_dir|
 File.unlink(target_common_dir) if File.symlink?(target_common_dir) && ENV['force'] == "true"
 if !File.exists?(target_common_dir)
 puts "Linking #{source_common_dir} -> #{target_common_dir}"
 File.symlink(source_common_dir, target_common_dir)
 else
 puts "Symlink #{target_common_dir} already exists!"
 end
 end
 end

Rails 3.1

ActionDispath::Static
config.serve_static_assets = true

or

rake railties:create_symlinks

bundle in hell

• No support for multiple locations
of a single gem

Forget about that:

group :development do
 gem 'iqvoc', :path => '../iqvoc'
end

group :production do
 gem 'iqvoc', :git => 'git@github.com:innoq/iqvoc.git'
end

Forget about that
as well:

Instead:
Separate

your Gemfiles

Rails 3.0 Engines

Rails 3.1 Engines

Rails 2.3 Engines

Engines
=

Mountable

Apps

@drogus
Piotr Sarnacki

Say thanks to:

Thanks!

