Build and Development
Environments
for Microservices with Nix

Christine Koppelt
Senior Consultant @ INNOQ
microxchg 2018

INNOQ

The Problem

INNOQ

Build & Development
Environments

* Require native tools

- Build tools, Compilers, Test tools, Runtimes, ...

* Should be reproducible & changeable

* Want: Identical build environments with
fixed versions everywhere

- Developer machines

- CI Server

INNOQ

(Many) Microservices:
(Many) Environments

* Developer may want to switch between
environments of multiple services

* Environment setup for new developers
should happen fast

* Tools can be provided only for a single
project

INNOQ

A possible solution: Nix

INNOQ

What is Nix?

* Package Manager

* Contains a broad range of tools
- ~13.000 packages

- Own packages can be added

* Own configuration language
* Works on MacOS and Linux

* Immutable package store, multi-version support

INNOQ

Loading tools on the fly

nix-shell -p a_package

ck@ck-innoq:~/microxchg$ java -version
openjdk version "1.8.0 131"

ck@ck-innoq:~/microxchg$ nix-shell -p openjdk9 maven
[nix-shell:~/microxchg]$ java -version
openjdk version "9.0.4-internal"

INNOQ

What happens

* Downloads packages
e Stores them at /nix/store

Example:

/nix/store/2£fiavk6091gb9wsr5601kjfewyx7d9a3-apache-maven-3.5.2

e Sets Links

[nix-shell:~/Dokumente/microxchg]$ which mvn
/nix/store/2£fiavk6091gb9wsr5601kjf6wyx7d9a3-apache-

maven-3.5.2/bin/mvn

INNOQ

Write a default.nix script

with import <nixpkgs>{};
stdenv.mkDerivation {
name = "my-service'";

buildInputs = [openjdk9 maven];

INNOQ

Loading configuration

nix-shell

nix-shell --run "your-test-command”

INNOQ

Version Pinning

let

hostPkgs = import <nixpkgs> {};

nixpkgs = (hostPkgs.fetchFromGitHub ({
owner = "NixOS";
repo = "nixpkgs-channels";

rev = "9c31c72cafe536e0c21238b2d47a23bfe7d1b033";
sha256 = "Opnl42js99ncn7£f53bw7hcp991djzb2m7xhjrax00xp72zswzv2n";
})i
in
with import nixpkgs {};

stdenv.mkDerivation {...}

INNOQ

Configure Tools

with import <nixpkgs>{};

let curl = pkgs.curl.override {

zlibSupport = true;
sslSupport = true;
http2Support = false;
}i
in

stdenv.mkDerivation {
name = "my-service";

buildInputs = [openjdk9 maven

INNOQ

curl];

Define new package

a new package = pkgs.stdenv.mkDerivation rec {
name = "a-new-package-${version}";
version = "2.7.1";
src = fetchurl { url = "http://..."; sha256 = "llppzd...";};
phases = ["installPhase"];
buildInputs = [pkgs.unzip];
installPhase = ''
mkdir -p Sout/new-package

unzip S$src -d Sout/new-package

4

INNOQ

Add it to buildinputs

stdenv.mkDerivation {
name = "my-service'";
buildInputs =

[openjdk9 maven a new package];

INNOQ

Extension

* Use nix for building the project
- Wrapper for a lot of build systems

* Using NixOS
- Operating System based on Nix and systemd
- Declarative configuration for everything

- Rollbacks, Versioning

- Testing Framework

INNOQ

Benefits

* Nix

- Makes it possible to create environments which
are: Scripted, versioned, immutable,
reproducible

e NixOS

- Extends the concept for system configuration
& services

INNOQ

Caveats

* Steep learning curve

* Documentation is not beginner friendly

INNOQ

Questions?

Christine.Koppelt@innog.com

INNOQ

