
Infrastructure for Continuous
Delivery & Microservices: PaaS or

Docker?
Eberhard Wolff

Fellow
@ewolff





http://microservices-buch.de/ http://microservices-book.com/



Why This Talk?

> 2008: Google App Engine

> Google Infrastructure for the masses!

> 2010: Selling PaaS into Enterprise

> Future of application development!

> Didn‘t really take off



What is Cloud?



Cloud = Self Service



Infrastructure
as a Service

Platform
as a Service

Software
as a Service

Software or Service 
that you use

Components that
you integrate into

your app

Virtual Application
Server

Handles Scale-Out

Mostly Managed by 
Provider

Virtual Servers

Manage Everything 
Yourself



PaaS

Your application

Including database, scaling,
monitoring, HTTP handling...



Cloud might be...

> Private / internal “on premise”

> Public “off premise”



Why PaaS?

> Scaling?

> Pay-as-you-go?

> Quickly and easily deploy applications
?



Continuous Delivery is
the value propostion

of PaaS



Issues With PaaS
> Standardized infrastructure

> Not flexible

> Hard to migrate existing applications

> Installing PaaS on-premise hard

> Enterprise=On-Premise

> Huge success for Internet apps



PaaS

Your application



Continuous Delivery:
Build Pipeline

Commit
Stage

Automated
Acceptance

Testing

Automated
Capacity
Testing

Manual
Explorative

Testing
Release

Deploy Deploy Deploy Deploy

Automated

Reproducible

Fast



Continuous Delivery: 
State of the Art

> Roll your own deployment automation

> Chef, Puppet, Ansible

> Use some kind of virtualization

> ...or Docker



Docker
> No true virtualization

> Linux Containers (lxc)

> Shared kernel

> Separate file systems

> Separated network interfaces



Docker File Systems

> Storage backends

> Devicemapper (block devices)

> Read only base images

> + Read/write image

> Can be stacked Ubuntu

Java

Application

Read / Write



Docker = Lightweight

> One base image

> Other images are just a diff

> Little storage

> Kernel etc. shared

> Almost no overhead over a process
CPU



Docker =
Simple Deployment

RUN COPY



Docker =
Simple Deployment

> Dockerfile

> Just a shell script

> Behind the scenes: Optimization

> Every Dockerfile line = filesystem snapshot

> Reuse snapshots for all other Dockerfiles



Docker‘s History

> Public PaaS must separate tenants

> Ideally multiple tenants per VM

> Docker started as foundation for dotCloud PaaS

> Docker and PaaS related



Why Docker Over PaaS?

> Still simple deployment

> Still simple installation

> Unlimited flexibility



Your application

Load Balancer

Log Parser

Cache

Monitoring

Database



Microservices



Definition 
Microservice

> Independent deployment unit

> Separate data handling & storage

> Should include UI

> Process

> VM

> Docker container

> Any technology

Server

Micro
Service



Operations

> Operating 50-100 Microservices?

> Huge challenge

> Only option: Standardize



Your application

Load Balancer

Log Parser

Cache

Monitoring

Database

Standardize

✓

✓

✓

??



Standardized
Environment?



Congrats on Building 
Your Own PaaS!



Demo: Elastic
Beanstalk



Amazon Elastic
Beanstalk

> Application:
Contains all versions & environments

> Version:
Deployabel artifact

> Environment:
Runs a version of the application



Elastic Beanstalk
Features

> Supports multiple environments

> Blue/green deployment support

> Scalable infrastructure

> Log files stored in S3

> Monitoring through Cloud Watch

> Also via CLI, API or Cloud Formation



But just a WAR
is not enough



Elastic Beanstalk

Turn Key
Components

Paas Flexibility

Modify Beanstalk
Image

Beanstalk
+Docker

Elastic
Beanstalk

Java, Go, Python...

Databases
(RDS)

ElastiCache ...

You own
EC2 Virtual Machine

Additional
Services



But I want to run in my
datacenter!



Cloud Foundry

> Open Source PaaS

> Foundation for IBM Bluemix, Pivotal CF ...



Cloud Foundry

Included Services
e.g. MySQL...

Paas Flexibility

Your own
Buildback

Cloud Foundry
Buildpacks

Java, Node, Ruby, Go

You own
Service

Additional
Services



Demo: Cloud Foundry



Conclusion



Conclusion

> Continuous Delivery = PaaS Value Proposition

> PaaS lacked flexibility

> Docker orignates from PaaS

> Microservices = Standardization

> Standardization = Your Own PaaS

> Buy instead of build?

> Modern PaaS provide the needed flexibility



Thank You!
@ewolff


