

MLOps

Sustainable Development and Operation
of Machine Learning Applications

Alexander Kniesz
Anja Kammer
Dr. Larysa Visengeriyeva

innoQ Deutschland GmbH
Krischerstraße 100 · 40789 Monheim am Rhein · Germany
Phone +49 2173 33660 · www.INNOQ.com

Layout: Tammo van Lessen with X ELATEX
Design: Murat Akgöz
Typesetting: André Deuerling

MLOps – Sustainable Development and Operation of Machine
Learning Applications
Published by innoQ Deutschland GmbH
1st Edition · October 2024

Copyright © 2024 Alexander Kniesz, Anja Kammer, Isabel Bär,
Michael Plöd, Dr. Larysa Visengeriyeva

Contents
1 Why you Might Want to use Machine Learning 1

1.1 Deployment Gap . 2
1.2 Scenarios of Change That Need to be Managed 5
1.3 MLOps Definition . 7
1.4 The Evolution of the MLOps . 7

2 “What is the business problem that we are trying to solve
here?” 9
2.1 Work Flow Decomposition . 9
2.2 AI Canvas . 10
2.3 Machine Learning Canvas . 10

3 Three Levels of ML Software 21
3.1 Data: Data Engineering Pipelines . 21
3.2 Model: Machine Learning Pipelines . 24
3.3 Code: Deployment Pipelines . 35

4 MLOps Principles 45
4.1 Iterative-Incremental Process in MLOps 45
4.2 Automation . 47
4.3 Continuous X . 51
4.4 Versioning . 51
4.5 Experiments Tracking . 52
4.6 Testing . 53
4.7 Monitoring . 57
4.8 “ML Test Score” System . 59
4.9 Reproducibility . 61
4.10 Loosely Coupled Architecture (Modularity) 63
4.11 ML-based Software Delivery Metrics (4 metrics from

“Accelerate”) . 64
4.12 Summary of MLOps Principles and Best Practices 66

iii

5 CRISP-ML(Q). The ML Lifecycle Process. 71
5.1 Business and Data Understanding . 72
5.2 Data Engineering (Data Preparation) . 74
5.3 Machine Learning Model Engineering . 74
5.4 Evaluating Machine Learning Models . 75
5.5 Deployment . 76
5.6 Monitoring and Maintenance . 76
5.7 Conclusion . 77
5.8 Acknowledgements . 79

6 MLOps Stack Canvas 81
6.1 Blocks of the MLOps Stack Canvas . 83
6.2 Documenting MLOps Architecture . 92
6.3 MLOps Maturity Level . 93
6.4 Conclusion . 95
6.5 Acknowledgements . 95

7 MLOps and Model Governance 97
7.1 Model Governance - A New Challenge . 98
7.2 Model Governance Will Not Be Optional 99
7.3 The Integration of Model Governance and MLOps102
7.4 Reproducibility and Validation .105
7.5 Observation, Security, Control . 107
7.6 Monitoring and Alerting .107
7.7 Model Service Catalog . 107
7.8 Security .108
7.9 Conformity and Auditability .109
7.10 Model Governance as Part of Model Management 111
7.11 Summary – The Main Components of Model Governance 113
7.12 Conclusion . 113

8 What we offer 115
8.1 Consulting, Development, and Operations 115

iv

AI Products with Domain-driven Design . 115

About the authors 117

1 Why youMightWant to use
Machine Learning

According to Statista Digital Economy Compass 20191, two major trends will
disrupt the economy and our lives:

• Data-driven world, which is linked to the exponentially-growing amount of
digitally-collected data.

• The increasing importance of Artificial Intelligence / Machine Learning /
Data Science, which derives insights from this tremendous amount of data.

For the sake of consistency, we will use the term machine learning (ML), however,
the concepts apply to both artificial intelligence and data science fields.

Every machine learning pipeline is a set of operations, which are executed to
produce a model. An ML model is roughly defined as a mathematical represen-
tation of a real-world process. We might think of the ML model as a function
that takes some input data and produces an output (classification, sentiment,
recommendation, or clusters). The performance of each model is evaluated by
using evaluation metrics, such as precision & recall, or accuracy.

Being a powerful tool, machine learning can solve many practical problems. Simi-
lar to any other software tools, wewould need to identify the “right” nail (use-case
or problem) to use this “hammer” (machine learning algorithms).

We are interested in including machine learning into software systems because
ML might solve some problems, which can be too complex to be solved tradi-
tionally. For such problems, a probabilistic (stochastic) solution that is imple-
mented by usingmachine learning, might be the right way to pursue. For example,
Perceptive problems in conversational UIs can be solved with techniques such as
speech recognition or sentiment analysis. Machine learning (deep learning) appears
to be the most appropriate one because such problems have a large number of
elements with different representations. Another type of problems that suitable
for ML, are multi-parameters problems. For example, we apply machine learning

1https://cdn.statcdn.com/download/pdf/DigitalEconomyCompass2019.pdf

1

https://cdn.statcdn.com/download/pdf/DigitalEconomyCompass2019.pdf

approaches to generate a stock prices prediction, which is a foundation for a stock
trading decisions.

Placing models into production means making your models available to the soft-
ware systems. Practically, by deploying the ML model, we can provide the follow-
ing functionality:

• Recommendation, which identifies the relevant product in a large collection
based on the product description or user’s previous interactions.

• Top-K Items Selection, which organizes a set of items in a particular order that
is suitable for user (e.g. search result).

• Classification, which assigns the input examples to one of the previously defined
classes (e.g “spam”/“not spam”).

• Prediction, which assigns some most probable value to an entity of interest,
such as stock value.

• Content Generation, to produce new content by learning fromexisting examples,
such as finishing a Bach chorale cantata by learning from his former composi-
tions.

• Question Answering, which answers an explicit question for example: “Does this
text describe this image?”

• Automation, which can be a set of user steps performed automatically, such as
stock trading

• Fraud and Anomaly Detection, to identify an action or transaction being a fraud
or suspicious

• Information Extraction and Annotation, to identify important information in a
text, such as people’s names, job descriptions, companies, and locations.

In the following Table, we summarize the ML/AI capabilities:

1.1 Deployment Gap
More and more enterprises are experimenting with ML. Getting a model into the
real world involves more than just building it. In order to take full advantage of
the built ML model by making it available to our core software system, we would
need to incorporate the trained ML model into the core codebase. That means,

2

Figure 1.1: Summary of ML/AI Capabilities (source: “The AI Organization” by David Carmona)

we need to deploy the ML model into production. By deploying models, other
software systems can supply data to these and get predictions, which are in turn
populated back into the software systems. Therefore, the full advantage of ML
models is only possible through the ML model deployment.

However, according to a report by Algorithmia “2020 State of EnterpriseMachine
Learning”2, many companies haven’t figured out how to achieve theirML/AI goals.
Because bridging the gap between ML model building and practical deployments
is still a challenging task. There’s a fundamental difference between building a
ML model in the Jupyter notebook model and deploying an ML model into a

2https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algo
rithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs
_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVS
mjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTz
jOfA&_hsmi=80984419

3

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419

production system that generates business value. Although AI budgets are on the
rise, only 22 percent of companies3 that use machine learning have successfully
deployed an ML model into production.

Figure 1.2: ML deployment difficulties (source: Algorithmia)

The “2020 State of Enterprise Machine Learning”4 report is based on a survey
of nearly 750 people including machine learning practitioners, managers for ma-
chine learning projects, and executives at tech firms. Half of the respondents
answered that it takes their company between a week and three months to deploy
an ML model. About 18 percent stated that it takes from three months to a year.
According to the report “The main challenges people face when developing ML capa-
bilities are scale, version control, model reproducibility, and aligning stakeholders”.

3https://designingforanalytics.com/resources/failure-rates-for-analytics-bi-iot-and-big-data-p
rojects-85-yikes/

4https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algo
rithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs
_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVS
mjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTz
jOfA&_hsmi=80984419

4

https://designingforanalytics.com/resources/failure-rates-for-analytics-bi-iot-and-big-data-projects-85-yikes/
https://designingforanalytics.com/resources/failure-rates-for-analytics-bi-iot-and-big-data-projects-85-yikes/
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf?utm_campaign=The%20Batch&utm_source=hs_email&utm_medium=email&utm_content=80984419&_hsenc=p2ANqtz--sz-e2gfqUeDvVSmjsXfvwOnLHB2ZkSdQsO1IRRAdnBIb0emf-JTh8NnwFxB-FeZberIw7_rI9ERTy8zFW8jvoTzjOfA&_hsmi=80984419

1.2 Scenarios of Change That Need to be
Managed

The reason for the previously described deployment gap is that the development
of the machine learning-based applications is fundamentally different from the
development of the traditional software. The complete development pipeline
includes three levels of change: Data,ML Model, and Code. This means that in
machine learning-based systems, the trigger for a build might be the combination
of a code change, data change, or model change. This is also known as “Changing
Anything Changes Everything” principle5.

Figure 1.3: Three layers of change

In the following, we list some scenarios of possible changes in machine learning
applications:

• After deploying the MLmodel into a software system, we might recognize that
as time goes by, the model starts to decay and to behave abnormally, so we
would need new data to re-train our ML model.

5https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

5

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

• After examining the available data, we might recognize that it’s difficult to get
the data needed to solve the problem we previously defined, so we would need
to re-formulate the problem.

• In the ML project at some stages, we might go back in the process and either
collect more data, or collect different data and re-label training data. This
should trigger the re-training of the ML Model.

• After serving the model to the end-users, we might recognize that the assump-
tions we made for training the model are wrong, so we have to change our
model.

• Sometimes the business objective might change while project development
and we decide to change the machine learning algorithm to train the model.

Additionally, three common issues influence the value of MLmodels once they’re
in production.

The first is data quality: since ML models are built on data, they are sensitive to
the semantics, amount and completeness of incoming data.

The second ismodel decay: the performance of ML models in production degen-
erate over time because of changes in the real-life data that has not been seen
during the model training.

The third is locality: when transferring ML models to new business customers,
thesemodels, which have been pre-trained on different user demographics, might
not work correctly according to quality metrics.

Since ML/AI is expanding into new applications and shaping new industries,
building successful ML projects remains a challenging task. As shown, there is
a need to establish effective practices and processes around designing, building,
and deploying ML models into production - MLOps.

Further reading: Why is DevOps for Machine Learning so Different?6

6https://hackernoon.com/why-is-devops-for-machine-learning-so-different-384z32f1

6

https://hackernoon.com/why-is-devops-for-machine-learning-so-different-384z32f1

1.3 MLOps Definition
We saw what real-world problems might be solved by applying machine learning.
We established the challenges of getting the ML models into production.

Finally, we are set up to define the termMLOps:

The term MLOps is defined as “the extension of the DevOps methodology to include
Machine Learning and Data Science assets as first-class citizens within the DevOps
ecology” Source: MLOps SIG7.

Alternatively, we can use the definition of Machine Learning Engineering
(MLE), where MLE is the use of scientific principles, tools, and techniques of machine
learning and traditional software engineering to design and build complex computing
systems. MLE encompasses all stages from data collection, to model building, to make
the model available for use by the product or the consumers.” (by A.Burkov).

MLOps, like DevOps, emerges from the understanding that separating the ML
model development from the process that delivers it —ML operations — lowers
quality, transparency, and agility of the whole intelligent software.

1.4 The Evolution of the MLOps
In the early 2000s, when businesses needed to implement machine learning
solutions, they used the vendors’ licensed software such as SAS, SPSS, and FICO.
With the rise of open-source software and the availability of data, more software
practitioners started using Python or R libraries for trainingMLmodels. However,
the usage of themodels in production was still a problem. As the containerization
technology was emerging, the deployment of the model in a scalable way was
solved by using Docker containers and Kubernetes. Recently, we see the evolution
of those solutions into ML deployment platforms that cover the whole iteration
of model experimentation, training, deployment, and monitoring. The following
Figure visualizes the evolution of the MLOps.

7https://github.com/cdfoundation/sig-mlops/blob/master/roadmap/2020/MLOpsRoadmap2020
.md

7

https://github.com/cdfoundation/sig-mlops/blob/master/roadmap/2020/MLOpsRoadmap2020.md
https://github.com/cdfoundation/sig-mlops/blob/master/roadmap/2020/MLOpsRoadmap2020.md

Figure 1.4: The evolution of MLOps (source: bit.ly/mlops-evolution)

8

2 “What is the business problem
that we are trying to solve
here?”

The most important phase in any software project is to understand the business
problem and create requirements. ML-based software is no different here. The
initial step includes a thorough study of business problems and requirements.
These requirements are translated into the model objectives and the model out-
puts. Possible errors andminimumsuccess for launching need to be specified. The
most useful question to continue working on the AI/ML solution is “how costly
are wrong predictions?” Answering that question will define the feasibility of the
ML project.

2.1 Work Flow Decomposition
Each task of the entire business process needs to be decomposed into its con-
stituent elements in order to see where prediction (ML model) can be intro-
duced.

Figure 2.1: Work Flow Decomposition (source: ml-ops.org)

9

To anwer the question “how to implement AI/ML”, we follow the next steps:

1. Identify the concrete process that might be powered by AI/ML (see the Figure
above).

2. Decompose that process into a directed graph of tasks.
3. Identify where humans can be removed from the task, meaning, what task can

be replaced by a prediction element such as ML model?
4. Estime the ROI for implementing an AI/ML tool to perform each task.
5. Rank-order the AI/ML implementation for each task in terms of ROI.
6. Start from the top of the list and structure the AI/ML implementation by

completing either the AI Canvas or theMachine Learning Canvas.

The AI Canvas or its alternative, the Machine Learning Canvas, assist and help
to structure the breakdown process. They also help to articulate exactly what is
needed to predict and howwe react on errorsmade by the prediction algorithm.

2.2 AI Canvas
The AI Canvaswas proposed by A. Agrawal et. al in their book “PredictionMachines.
The Simple Economics of Artificial Intelligence.” 2018, and “is an aid for contem-
plating, building, and assessing AI tools”. The example of such canvas and the
description of each component is provided in the Figure below:

2.3 Machine Learning Canvas
While the above AI canvas represents a high-level structure of the ML/AI imple-
mentation, at some point we would like to specify both the vision for the ML
system and the specifics of the system. To achieve those goals there is another
tool, the Machine Learning Canvas, as suggested by Louis Dorard1. This canvas
structures the ML project and helps to specify the core requirements to realise
the project. Initially, we identify the objective by answering a question what do
we want to achieve for the end-users of the predictive system? Next, we connect the
business goal to the ML task.

1https://www.louisdorard.com/

10

https://www.louisdorard.com/

Figure 2.2: AI Canvas (source:
https://hbr.org/2018/04/a-simple-tool-to-start-making-decisions-with-the-help-of-ai)

The central part of the canvas is the Value Proposition building block, which
describes products or services that create some value for customers. Typically,
we answer the following questions:What problems are we trying to solve?Why is
it important?Who is the end-user of our system?What value does the ML project
deliver to the end-user? How will they use your outputs/predictions?

The remaining canvas is divided into three broad categories: Learning, Prediction,
andEvaluation. The Learning category is responsible to specify how theMLmodel
will be learned. The Prediction part describes how the prediction is performed.
Finally, the Evaluation category contains methods and metrics for the ML model
and the system evaluation. The following machine learning canvas is an example
provided by Louis Dorard2:

2https://www.louisdorard.com/

11

https://www.louisdorard.com/

Figure 2.3: Machine Learning Canvas (source: machinelearningcanvas.com)

In total, theMachine Learning Canvas is structured as ten compound blocks, such
as Value Proposition, Data Sources, Prediction Task, Features (Engineering), Offline
Evaluation, Decisions, Making Predictions, Collecting Data, Building Models, and Live
Evaluation and Monitoring. Each of those blocks is focused on one aspect of the
future ML application:

2.3.1 Value Proposition

This is the crucial blocks in the whole canvas. Here we should answer three
important questions:

1. What is the problem?What objective are we serving?What are we trying to do
for the end-user?

2. Why is it important?

12

3. Who is the end-user? Can we specify the persona?

To create an effective Value Proposition statement, we could use the Geoffrey
Moore’s value positioning statement template:3

****For (target customer) who (need or opportunity), our (product/service name)
is (product category) that (benefit).****

Narrowing the domain4 of the problem could be useful for the next question
regarding the required data. For example, instead of creating a universal chat-bot,
build a bot that helps with scheduling conference-calls.

2.3.2 Data Sources

Data is essential for training ML models. In this block, we clarify all available and
possible data sources to be used for theML task. As an example, wemight consider
using:

• Internal/external databases.
• Data marts, OLAP cubes, data warehouses, OLTP systems.
• Hadoop clusters,
• REST APIs to gather data.
• Static files, spreadsheets.
• Web scraping.
• The output of other (ML) systems.
• Open-source data sets.

• Useful publicly available datasets: Kaggle Datasets5, Google’s Dataset
Search6, UCI Repository7, or Wikipedia’s list of datasets for machine-
learning research8

3https://the.gt/geoffrey-moore-positioning-statement/
4https://cdixon.org/2015/02/01/the-ai-startup-idea-maze
5https://www.kaggle.com/datasets
6https://datasetsearch.research.google.com/
7https://archive.ics.uci.edu/ml/datasets.php
8https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

13

https://the.gt/geoffrey-moore-positioning-statement/
https://cdixon.org/2015/02/01/the-ai-startup-idea-maze
https://www.kaggle.com/datasets
https://datasetsearch.research.google.com/
https://archive.ics.uci.edu/ml/datasets.php
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

Furthermore, we should clarify the hidden costs of a machine learning applica-
tion.

• How expensive could get the data storage?
• Should we purchase external data?
• What data assess tools and processes are available tomake data accessible from

other systems?

2.3.3 Prediction Task

After clarifying what data is available, we brainstorm what type of ML should be
used. Here are some examples of questions that might clarify the ML Task:

• Supervised or unsupervised learning?
• Is this anomaly detection?
• Is the problem about which option should be taken? (recommendation)
• Do we need to predict a continuous value? (regression)
• Which category need to be predicted? (classification)
• Do we need to group our data? (clustering)
• If supervised, what type of ML task should be taken: classification, regression,

or ranking?
• If classification, will it be binary- or multiclass classification task?
• What is the input for a prediction task?

• e.g. E-mail text.

• What is the output of the prediction task?

• e.g. “spam” and “regular”

• What is the degree of complexity our ML Model could assume?

• e.g. is our model a combination of other ML models? Do we employ ensem-
ble learning? Howmany hidden layers included in the deep learning model?

• What are the complexity costs, such as training and inference time, for the
above models?

14

2.3.4 Features (Engineering)

As every ML algorithm requires input data in the form of features, we should
clarify how should the input data be represented.

• How do we extract features from raw sources?
• Consider to include domain experts to specify what data aspects are most

important for the particular ML task.

2.3.5 Offline Evaluation

Before any implementation of the ML model training, we would need to specify
and set up the methods and metrics to evaluate the system before deployment.
Here we would need to specify:

• Domain specific metrics that justify the deployment of the ML model. For
example, simulated with the training and testing data, would the prediction of
the model generate more revenue than the revenue created in the “traditional”
way.

• What technical evaluation metrics should be used?

• Precision, Recall, F-1 measure.
• Accuracy.

• What is the meaning of model prediction errors such as false positives and false
negatives?

• What is our test data?
• How much test data do we need to be confident that the ML model performs

well?

2.3.6 Decisions

After completing theML task, Feature engineering, and the evaluation details, the
next is to specify:

• How are prediction used to make decisions?
• How does the end-user or the system interacts with the model predictions?

15

• e.g. What happens if the user gets a list of product recommendations?What
happens if the incoming e-mail is classified as “spam”?

• Are there hidden costs in decision making, such as human in the loop?

Such information is required to later decide on how to deploy the ML model.

2.3.7 Making Predictions

This block includes information about when we make a prediction on new in-
puts.

• When should predictions be available?

• New predictions are made each time when the user opens the app, such as
recommendations.

• New predictions are made on request.
• New predictions are made on schedule.

• Are predictions made on the fly for each data point or for a batch of the input
data?

• How computationally complex could themodel inference get in the application?
• Is there a human in the loop to support in making predictions?

2.3.8 Collecting Data

Related to the Making Predictions, the Collecting Data block gathers information
about new data that should be collected in order to re-train the ML model. In
this way, we specify how we prevent the ML model decay phenomenon. Further
questions to answer in this block are:

• How do we label the new data?
• How expensive is it to collect new data?
• How expensive is it to process rich media like images, sound, or video?
• Is there human in the loop for themanual cleaning and labelling of the incoming

data?

16

2.3.9 Building Models

Tightly related to the previous block, the Building Models answers questions re-
garding updating the ML models, because different ML tasks require different
frequencies of model re-training:

• How often the model should be retrained?

• e.g. hourly, weekly, or with every new data point.

• What are the hidden costs for model re-training?

• e.g. do we use cloud resources to perform such tasks?
• what is the price policy of the cloud vendor?
• how should we perform hardware cost estimation?
• common Cloud Pricing Calculators are Google Cloud Calculator9, Amazon

ML Pricing10,Microsoft Azure Calculator11

• How long will it take to re-train the model?
• How dowe deal with the scaling issues of cloud operations as they can bemore

complex and costly?
• Do we plan for change in the tech stack?

• e.g. how can we deal with the tech stack evolution as new tools and devel-
opment workflows are emerging in the modern AI?

2.3.10 Live Evaluation andMonitoring

After deployment, the ML model should be evaluated and here we would need to
specify both model and business metrics, which should correlate. Generally, the
metrics should follow the S.M.A.R.T methodology and be: Specific, Measurable,
Achievable, Relevant, and Time-bound.

• How do we track the system performance?

• e.g. A/B Testing

9https://cloud.google.com/products/calculator
10https://docs.aws.amazon.com/machine-learning/latest/dg/pricing.html
11https://azure.microsoft.com/en-in/pricing/calculator/

17

https://cloud.google.com/products/calculator
https://docs.aws.amazon.com/machine-learning/latest/dg/pricing.html
https://azure.microsoft.com/en-in/pricing/calculator/

• How do we evaluate the value creation?

• e.g users spent less time on the inbox.

The deliverable in this stage is the completed Machine Learning Canvas. The
effort to fill out this canvas might initiate an existential discussion regarding the
real objective and hidden costs for the ML-software. Such a discussion might result
in a decision not to implement AI/ML at all. Possible reasons can be as follows:

• The solution to our problem does not tolerate wrong predictions.
• Implementing AI/ML would generate a low ROI.
• The maintenance of the ML/AI project is not guaranteed.

Another question would be when to deploy ML/AI? The following Figure shows the
trade-off of early vs. late ML model deployment.

Figure 2.4: When to deploy ML/AI (source: ml-ops.org)

18

Training

• Domain-driven Design for Machine Learning products12

Further reading

• “What is THE main reason most ML projects fail?”13

• The New Business of AI (and How It’s Different From Traditional Software)14

12https://www.socreatory.com/en/trainings/ddd4ml
13https://towardsdatascience.com/what-is-the-main-reason-most-ml-projects-fail-515d409a161f
14https://a16z.com/2020/02/16/the-new-business-of-ai-and-how-its-different-from-traditional

-software/

19

https://www.socreatory.com/en/trainings/ddd4ml
https://towardsdatascience.com/what-is-the-main-reason-most-ml-projects-fail-515d409a161f
https://a16z.com/2020/02/16/the-new-business-of-ai-and-how-its-different-from-traditional-software/
https://a16z.com/2020/02/16/the-new-business-of-ai-and-how-its-different-from-traditional-software/

3 Three Levels of ML Software
ML/AI is rapidly adopted by new applications and industries. As already been
mentioned, the goal of a machine learning project is to build a statistical model
by using collected data and applying machine learning algorithms. Yet building
successful ML-based software projects is still difficult because every ML-based
software needs to manage three main assets: Data, Model, and Code. Machine
Learning Model Operationalization Management - MLOps, as a DevOps exten-
sion, establishes effective practices and processes around designing, building,
and deploying ML models into production. We describe here essential technical
methodologies, which are involved in the development of the Machine Learning-
based software, namely Data Engineering, ML Model Engineering, and Software
Release Engineering.

We recommend documenting everything you have learned in each step of the
whole pipeline.

3.1 Data: Data Engineering Pipelines
We mentioned previously that the fundamental part of any machine learning
workflow is Data1. Collecting good data sets has a huge impact on the quality
and performance of the ML model. The famous citation

“Garbage In, Garbage Out”,

in the machine learning context means that the MLmodel is only as good as your
data. Therefore, the data, which has been used for training of the MLmodel, indi-
rectly influence the overall performance of the production system. The amount
and quality of the data set are usually problem-specific and can be empirically
discovered.

Being an important step, data engineering is reported as heavily time-consuming.
We might spend the majority of time on a machine learning project constructing
data sets, cleaning, and transforming data.

1https://www.datamesh-architecture.com/

21

https://www.datamesh-architecture.com/

The data engineering pipeline includes a sequence of operations on the available
data. The final goal of these operations is to create training and testing datasets
for the ML algorithms. In the following, we describe each stage of the data engi-
neering pipeline such asData Ingestion, Exploration and Validation,DataWrangling
(Cleaning), and Data Splitting.

3.1.1 Data Ingestion

Data Ingestion - Collecting data by using various systems, frameworks and formats,
such as internal/external databases, data marts, OLAP cubes, data warehouses,
OLTP systems, Spark, HDFS etc. This step might also include synthetic data gen-
eration or data enrichment The best practices for this step include the following
actions that should be maximally automated:

• Data Sources Identification: Find the data and document its origin (data prove-
nance).

• Space Estimation: Check how much storage space it will take.
• Space Location: Create a workspace with enough storage space.
• Obtaining Data: Get the data and convert them to a format that can be easily

manipulated without changing the data itself.
• Back up Data: Always work on a copy of the data and keep the original dataset

untouched.
• Privacy Compliance: Ensure sensitive information is deleted or protected (e.g.,

anonymized) to ensure GDPR compliance.
• Metadata Catalog: Start documenting themetadata of the dataset by recording

the basic information about the size, format, aliases, last modified time, and
access control lists. (Further reading2)

• Test Data: Sample a test set, put it aside, and never look at it to avoid the “data
snooping” bias. You fell for this if you are selecting a particular kind of ML
model by using the test set. This will lead to an ML model selection that is
too optimistic and will not perform well in production.

2https://dl.acm.org/doi/pdf/10.1145/2882903.2903730?download=true

22

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730?download=true

3.1.2 Exploration and Validation

Exploration and Validation - Includes data profiling to obtain information about
the content and structure of the data. The output of this step is a set of metadata,
such as max, min, avg of values. Data validation operations are user-defined error
detection functions, which scan the dataset to spot some errors. The validation
is a process of assessing the quality of the data by running dataset validation
routines (error detectionmethods). For example, for “address”-attributes, are the
address components consistent? Is the correct postal code associated with the
address? Are there missing values in the relevant attributes? The best practices
for this step include the following actions:

• Use RAD tools: Using Jupyter notebooks is a good way to keep records of data
exploration and experimentation.

• Attribute Profiling: Obtain and document the metadata about each attribute,
such as

• Name
• Number of Records
• Data Type (categorical, numerical, int/float, text, structured, etc.)
• Numerical Measures (min, max, avg, median, etc. for numerical data)
• Amount of missing values (or “missing value ratio” = Number of absent

values/ Number of records)
• Type of distribution (Gaussian, uniform, logarithmic, etc.)

• Label Attribute Identification: For supervised learning tasks, identify the target
attribute(s).

• Data Visualization: Build a visual representation for value distribution.
• Attributes Correlation: Compute and analyze the correlations between

attributes.
• Additional Data: Identify data that would be useful for building the model (go

back to “Data Ingestion”).

3.1.3 DataWrangling (Cleaning)

Data Wrangling (Cleaning) - Data preparation step where we programmatically
wrangle data, e.g., by re-formatting or re-structuring particular attributes that

23

might change the form of the data’s schema. We recommend writing scripts or
functions for all data transformations in the data pipeline to re-use all these
functionalities on future data.

• Transformations: Identify the promising transformations you may want to
apply.

• Outliers: Fix or remove outliers (optional).
• Missing Values: Fill in missing values (e.g., with zero, mean, median) or drop

their rows or columns.
• Not relevant Data: Drop the attributes that provide no useful information for

the task (relevant for feature engineering).
• RestructureData:Might include the following operations (from the book “Prin-

ciples of Data Wrangling”3)

• Reordering record fields by moving columns
• Creating new record fields through extracting values
• Combining multiple record fields into a single record field
• Filtering datasets by removing sets of records
• Shifting the granularity of the dataset and the fields associated with records

through aggregations and pivots.

3.1.4 Data Splitting

Data Splitting - Splitting the data into training (80%), validation, and test datasets
to be used during the core machine learning stages to produce the ML model.

3.2 Model: Machine Learning Pipelines
The core of the ML workflow is the phase of writing and executing machine
learning algorithms to obtain an ML model. The model engineering pipeline is
usually utilized by a data science team and includes a number of operations that
lead to a final model. These operations include Model Training, Model Evaluation,
Model Testing, and Model Packaging. We recommend automating these steps as
much as possible.
3https://learning.oreilly.com/library/view/principles-of-data/9781491938911/

24

https://learning.oreilly.com/library/view/principles-of-data/9781491938911/

3.2.1 Model Training

Model Training - The process of applying the machine learning algorithm on
training data to train an ML model. It also includes feature engineering the hy-
perparameter tuning for the model training activity. The following list is adopted
from “Hands-OnMachine Learning with Scikit-Learn, Keras, and TensorFlow” by
Aurélien Géron4

• Feature engineering might include:

• Discretize continuous features
• Decompose features (e.g., categorical, date/time, etc.)
• Add transformations of features (e.g., log(x), sqrt(x), x2, etc.)
• Aggregate features into promising new features
• Feature scaling: Standardize or normalize features
• New features should be added quickly to get fast from a feature idea to the

feature running in production. Further reading “Feature Engineering for
Machine Learning. Principles and Techniques for Data Scientists” by Alice
Zheng, Amanda Casari5

• Model Engineering might be an iterative process and include the following
workflow:

• Every ML model specification (code that creates an ML model) should go
through a code review and be versioned.

• Train many ML models from different categories (e.g., linear regression,
logistic regression, k-means, naive Bayes, SVM, Random Forest, etc.) using
standard parameters.

• Measure and compare their performance. For each model, use N-fold cross-
validation and compute the mean and standard deviation of the perfor-
mance measure on the N folds.

• Error Analysis: analyze the types of errors the ML models make.
• Consider further feature selection and engineering.

4https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/app02.ht
ml#project_checklist_appendix

5http://shop.oreilly.com/product/0636920049081.do

25

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/app02.html#project_checklist_appendix
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/app02.html#project_checklist_appendix
http://shop.oreilly.com/product/0636920049081.do

• Identify the top three to fivemost promisingmodels, preferringmodels that
make different types of errors.

• Hyperparameters tuning by using cross-validation. Please note that data
transformation choices are also hyperparameters. Random search for hy-
perparameters is preferred over grid search.

• Consider Ensemblemethods such asmajority vote, bagging, boosting, or stack-
ing. Combining ML models should produce better performance than run-
ning them individually. (Further reading “Ensemble Methods: Foundations
and Algorithms” by Zhi-Hua Zhou6)

3.2.2 Model Evaluation

Model Evaluation - Validate the trained model to ensure it meets original business
objectives before serving the ML model in production to the end-user.

3.2.3 Model Testing

Model Testing - Once the final ML model is trained, its performance needs to be
measured by using the hold-back test dataset to estimate the generalization error
by performing the final “Model Acceptance Test”.

3.2.4 Model Packaging

Model Packaging - The process of exporting the final ML model into a specific
format (e.g. PMML, PFA, or ONNX), which describes the model to be consumed
by the business application. We cover the ML model packaging in the part ‘ML
Model serialization formats’ below.

3.2.5 Different forms of MLworkflows

Operating an ML model might assume several architectural styles. In the fol-
lowing, we discuss four architectural patterns which are classified along two
dimensions:

6https://www.amazon.com/exec/obidos/ASIN/1439830037/acmorg-20

26

https://www.amazon.com/exec/obidos/ASIN/1439830037/acmorg-20

1. ML Model Training and

2. ML Model Prediction

Please note that for the sake of simplicity, we disregard the third dimension 3.
ML Model Type, which denotes the type of machine learning algorithm such as
supervised, unsupervised, semisupervised, and Reinforcement Learning.

There are two ways how we performMLModel Training:

1. Offline learning (aka batch or static learning): The model is trained on a set of
already collected data. After deploying to the production environment, theML
model remains constant until it re-trained because the model will see a lot of
real-live data and becomes stale. This phenomenon is called ‘model decay’ and
should be carefully monitored.

2. Online learning (aka dynamic learning): The model is regularly being re-
trained as new data arrives, e.g. as data streams. This is usually the case for
ML systems that use time-series data, such as sensor, or stock trading data to
accommodate the temporal effects in the ML model.

The second dimension isML Model Prediction, which denotes the mechanics of
the ML model to makes predictions. Here we also distinguish two modes:

1. Batch predictions: The deployed ML model makes a set of predictions based
on historical input data. This is often sufficient for data that is not time-
dependent, or when it is not critical to obtain real-time predictions as output.

2. Real-time predictions (aka on-demand predictions): Predictions are gener-
ated in real-time using the input data that is available at the time of the
request.

After identifying these two dimensions, we can classify the operationalization of
machine learning models into four ML architecture patterns:

In the following, we present a description of themodel architectural patterns such
as Forecast,Web-Service, Online Learning, and AutoML.

27

Figure 3.1: Model Serving Patterns (source:
https://www.quora.com/How-do-you-take-a-machine-learning-model-to-production)

Forecast

This type of machine learning workflow is widely spread in academic research or
data science education (e.g., Kaggle or DataCamp). This form is used to experi-
ment with ML algorithms and data as it is the easiest way to create a machine
learning system. Usually, we take an available dataset, train the ML model, then
run this model on another (mostly historical) data, and the MLmodel makes pre-
dictions. This way, we output a forecast. This ML workflow is not very useful and,
therefore, not common in an industry setting for production systems (e.g. mobile
applications).

28

Web-Service

The most commonly described deployment architecture for ML models is a web
service (microservise). The web service takes input data and outputs a prediction
for the input data points. The model is trained offline on historical data, but it
uses real-live data to make predictions. The difference from a forecast (batch
predictions) is that the MLmodel runs near real-time and handles a single record
at a time instead of processing all the data at once. The web service uses real-time
data to make predictions, but the model remains constant until it is re-trained
and re-deployed into the production system.

The figure below illustrates the architecture for wrapping trained models as de-
ployable services. Please note, we discuss methods for wrapping trained ML
models as deployable services in the Deployment Strategies Section.

Figure 3.2: Model Serving as Micro Service (source: ml-ops.org)

29

Online Learning

The most dynamic way to embed machine learning into a production system is
to implement online learning, which is also known as real-time streaming analytics.
Please note that online learning can be a confusing namebecause the core learning
or ML model training is usually not performed on the live system. We should
call it incremental learning; however, the term online learning is already established
within the ML community.

In this type of ML workflow, the ML learning algorithm is continuously receiving
a data stream, either as single data points or in small groups called mini-batches.
The system learns about new data on the fly as it arrives, so the ML model is
incrementally being re-trained with new data. This continually re-trained model
is instantly available as a web service.

Technically, this type of ML system works well with the lambda architecture in big
data systems. Usually, the input data is a stream of events, and the ML model
takes the data as it enters the system, provides predictions and re-learns on these
new data. The model would typically run as a service on a Kubernetes cluster or
similar.

A big difficulty with the online learning system in production is that if bad data
is entering the system, the ML model, as well as the whole system performance,
will increasingly decline.

AutoML

An even more sophisticated version of online learning is automated machine learn-
ing or AutoML.

AutoML is getting a lot of attention and is considered the next advance for
enterprise ML. AutoML promises training ML models with minimal effort and
without machine learning expertise. The user needs to provide data, and the
AutoML system automatically selects an ML algorithm, such as neural network
architecture, and configures the selected algorithm.

Instead of updating the model, we execute an entire ML model training pipeline
in production that results in new models on the fly. For now, this is a very

30

Figure 3.3: Online Learning (source: ml-ops.org)

experimental way to implement ML workflows. AutoML is usually provided by
big cloud providers, such as Google7 or MS Azure8. However, models build with
AutoML need to reach the level of accuracy required for real-world success.

Further reading

• AutoML: Overview and Tools9

• AutoML Benchmark10

3.2.6 MLModel serialization formats

There are various formats to distribute ML models. In order to achieve a dis-
tributable format, the ML model should be present and should be executable as
an independent asset. For example, we might want to use a Scikit-learn model in

7https://cloud.google.com/automl/
8https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
9https://www.automl.org/automl/
10https://www.researchgate.net/profile/Marc_Andre_Zoeller/publication/332750780_Benchmar

k_and_Survey_of_Automated_Machine_Learning_Frameworks/links/5e15bd1792851c8364ba
a47a/Benchmark-and-Survey-of-Automated-Machine-Learning-Frameworks.pdf

31

https://cloud.google.com/automl/
https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
https://www.automl.org/automl/
https://www.researchgate.net/profile/Marc_Andre_Zoeller/publication/332750780_Benchmark_and_Survey_of_Automated_Machine_Learning_Frameworks/links/5e15bd1792851c8364baa47a/Benchmark-and-Survey-of-Automated-Machine-Learning-Frameworks.pdf
https://www.researchgate.net/profile/Marc_Andre_Zoeller/publication/332750780_Benchmark_and_Survey_of_Automated_Machine_Learning_Frameworks/links/5e15bd1792851c8364baa47a/Benchmark-and-Survey-of-Automated-Machine-Learning-Frameworks.pdf
https://www.researchgate.net/profile/Marc_Andre_Zoeller/publication/332750780_Benchmark_and_Survey_of_Automated_Machine_Learning_Frameworks/links/5e15bd1792851c8364baa47a/Benchmark-and-Survey-of-Automated-Machine-Learning-Frameworks.pdf

a Spark job. This means that the ML models should work outside of the model-
training environment. In the following, we describe Language-agnostic and Vendor-
specific exchange formats for ML models.

Language-agnostic exchange formats

• Amalgamation is the simplest way to export an ML model. The model and all
necessary code to run are bundled as one package. Usually, it is a single source
code file that can be compiled on nearly any platform as a standalone program.
For example, we can create a standalone version of an ML model by using
SKompiler11. This python package provides a tool for transforming trained
Scikit-learn models into other forms, such as SQL queries, Excel formulas,
Portable Format for Analytics (PFA) files, or SymPy expressions. The last can
be translated to code in a variety of languages, such as C, Javascript, Rust, Julia,
etc. Amalgamation is a straightforward concept, and the exported ML models
are portable. With some easy ML algorithms, such as logistic regression or
decision tree, this format is compact andmight have good performance, which
is useful for constrained embedded environments. However, the ML model
code and parameters need to be managed together.

• PMML is a format for model serving based on XML with the file extension
.pmml. PMML has been standardized by the Data Mining Group (DMG)12.
Basically, .ppml describes a model and pipeline in XML13. The PMML supports
not all of theMLalgorithms, and its usage in open source-driven tools is limited
due to licensing issues.

• PFA (Portable Format for Analytics14) is designed as a replacement for PMML.
From DMG: “A PFA document is a string of JSON-formatted text that describes
an executable called a scoring engine. Each engine has a well-defined input, a well-
defined output, and functions for combining inputs to construct the output in an
expression-centric syntax tree”. PFA capabilities include (1) control structures,
such as conditionals, loops, and user-defined functions, (2) expressed within

11https://pypi.org/project/SKompiler/
12http://dmg.org/dmg-members.html
13http://dmg.org/pmml/pmml_examples/
14http://dmg.org/pfa/docs/motivation/

32

https://pypi.org/project/SKompiler/
http://dmg.org/dmg-members.html
http://dmg.org/pmml/pmml_examples/
http://dmg.org/pfa/docs/motivation/

JSON, and can, therefore, be easily generated and manipulated by other pro-
grams, (3) fine-grained function library supporting extensibility callbacks. To
run ML models as PFA files, we will need a PFA-enabled environment.

• ONNX (Open Neural Network eXchange) is an ML framework independent
file format. ONNXwas created to allow anyML tool to share a singlemodel for-
mat. This format is supported by many big tech companies such as Microsoft,
Facebook, and Amazon. Once the MLmodel is serialized in the ONNX format,
it can be consumed by onnx-enabled runtime libraries (also called inference
engines) and then make predictions. Here15 you will find the list of tools that
can use ONNX format. Notably that most deep learning tools have ONNX
support.

Source: Open Standard Models16

Vendor-specific exchange formats

• Scikit-Learn saves models as pickled python objects, with a .pkl file extension.
• H2O allows you to convert the models you have built to either POJO (Plain

Old Java Object) or MOJO (Model Object, Optimized).
• SparkMLmodels that can be saved in the MLeap file format and served in real-

time using an MLeap model server. The MLeap runtime is a JAR that can run
in any Java application.MLeap supports Spark, Scikit-learn, and Tensorflow for
training pipelines and exporting them to an MLeap Bundle.

• TensorFlow saves models as .pb files; which is the protocol buffer files exten-
sion.

• PyTorch serves models by using their proprietary Torch Script as a .pt file.
Their model format can be served from a C– application.

• Keras saves a model as a .h5 file, which is known in the scientific community
as a data file saved in the Hierarchical Data Format (HDF). This type of file
contains multidimensional arrays of data.

• Apple has its proprietary file format with the extension .mlmodel to store
models embedded in iOS applications. The CoreML framework has native sup-
port for Objective-C and Swift programming languages. Applications trained

15https://github.com/onnx/tutorials#scoring-onnx-models
16https://github.com/adbreind/open-standard-models-2019

33

https://github.com/onnx/tutorials#scoring-onnx-models
https://github.com/adbreind/open-standard-models-2019

in other ML frameworks, such as TensorFlow, Scikit-Learn, and other frame-
works need to use tools like such as coremltools and Tensorflow converter to
translate their ML model files to the .mlmodel format for use on iOS.

The following Table summarizes all ML model serialization formats:

Further reading:

• ML Models training file formats17

17https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-train
ing-inferencing-and-the-feature-store-2e0c3d18d4f9

34

https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-training-inferencing-and-the-feature-store-2e0c3d18d4f9
https://towardsdatascience.com/guide-to-file-formats-for-machine-learning-columnar-training-inferencing-and-the-feature-store-2e0c3d18d4f9

• Open Standard Models18

3.3 Code: Deployment Pipelines
The final stage of delivering an ML project includes the following three steps:

1. Model Serving - The process of deploying the ML model in a production
environment.

2. Model Performance Monitoring - The process of observing the ML model per-
formance based on live and previously unseen data, such as prediction or rec-
ommendation. In particular, we are interested in ML-specific signals, such as
prediction deviation from previous model performance. These signals might
be used as triggers for model re-training.

3. Model Performance Logging - Every inference request results in a log-record.

In the following, we discuss Model Serving Patterns and Model Deployment Strate-
gies.

3.3.1 Model Serving Patterns

Three components should be considered when we serve an ML model in a pro-
duction environment. The inference is the process of getting data to be ingested
by amodel to compute predictions. This process requires amodel, an interpreter for
the execution, and input data.

Deploying an ML system to a production environment includes two aspects,
first deploying the pipeline for automated retraining and ML model deployment.
Second, providing the API for prediction on unseen data.

18https://github.com/adbreind/open-standard-models-2019

35

https://github.com/adbreind/open-standard-models-2019

Model serving is a way to integrate the ML model in a software system. We
distinguish between five patterns to put the ML model in production:Model-as-
Service, Model-as-Dependency, Precompute, Model-on-Demand, and Hybrid-
Serving. Please note that the above-described model serialization formats might
be used for any of the model serving patterns.

The following taxonomy shows these approaches:

Now, we present the serving patterns to productionize the ML model such as
Model-as-Service, Model-as-Dependency, Precompute, Model-on-Demand, and
Hybrid-Serving.

36

Model-as-Service

Model-as-Service is a common pattern for wrapping an ML model as an indepen-
dent service. We can wrap the ML model and the interpreter within a dedicated
web service that applications can request through a REST API or consume as a
gRPC service.

This pattern can be used for variousMLworkflows, such as Forecast,Web Service,
Online Learning.

Figure 3.4: Model as Service (source: https://learning.oreilly.com/library/view/hands-on-machine-
learning/9781492032632/ch02.html#project_chapter)

Model-as-Dependency

Model-as-Dependency is probably the most straightforward way to package an
ML model. A packaged ML model is considered as a dependency within the
software application. For example, the application consumes the ML model like
a conventional jar dependency by invoking the prediction method and passing
the values. The return value of such method execution is some prediction that
is performed by the previously trained ML model. The Model-as-Dependency
approach is mostly used for implementing the Forecast pattern.

Precompute Serving Pattern

This type ofMLmodel serving is tightly related to the ForecastMLworkflow.With
the Precompute serving pattern, we use an already trained ML model and precom-

37

Figure 3.5: Model as Dependency (source: ml-ops.org)

pute the predictions for the incoming batch of data. The resulting predictions are
persisted in the database. Therefore, for any input request, we query the database
to get the prediction result.

Figure 3.6: Precompute Serving Pattern (source: ml-ops.org)

38

For further reading we recommend: Bringing ML to Production (Slides)19

Model-on-Demand

The Model-on-Demand pattern also treats the ML model as a dependency that
is available at runtime. This ML model, contrary to the Model-as-Dependency
pattern, has its own release cycle and is published independently.

Themessage-broker architecture is typically used for such on-demand model serv-
ing. Themessage-broker topology architecture pattern contains two main types of
architecture components: a broker component and an event processor component.
The broker component is the central part that contains the event channels that
are utilised within the event flow. The event channels, which are enclosed in
the broker component, are message queues. We can imagine such architecture
containing input- and output-queues. A message broker allows one process to
write prediction-requests in an input queue. The event processor contains the model
serving runtime and the ML model. This process connects to the broker, reads
these requests in batch from the queue and sends them to the model to make
the predictions. The model serving process runs the prediction generation on the
input data and writes the resulted predictions to the output queue. Afterwards,
the queued prediction results are pushed to the prediction service that initiated
the prediction request.

Further reading:

• Event-driven architecture20

• Web services vs. streaming for real-time machine learning endpoints21

19https://www.slideshare.net/mikiobraun/bringing-ml-to-production-what-is-missing-amld-202
0

20https://learning.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.h
tml

21https://towardsdatascience.com/web-services-vs-streaming-for-real-time-machine-learning-e
ndpoints-c08054e2b18e

39

https://www.slideshare.net/mikiobraun/bringing-ml-to-production-what-is-missing-amld-2020
https://www.slideshare.net/mikiobraun/bringing-ml-to-production-what-is-missing-amld-2020
https://learning.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html
https://learning.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html
https://towardsdatascience.com/web-services-vs-streaming-for-real-time-machine-learning-endpoints-c08054e2b18e
https://towardsdatascience.com/web-services-vs-streaming-for-real-time-machine-learning-endpoints-c08054e2b18e

Figure 3.7: Model on Demand (source: ml-ops.org)

Hybrid-Serving (Federated Learning)

Federated Learning, also known as hybrid-serving, is another way of serving a
model to the users. It is unique in the way it does, there is not only one model
that predicts the outcome, but there are also lots of it. Exactly spoken there are
as many models as users exist, in addition to the one that’s held on a server. Let
us start with the unique model, the one on the server. The model on the server-
side is trained only once with the real-world data. It sets the initial model for
each user. Also, it is a relatively general trained model so it fits for the majority of
users. On the other side, there are the user-side models, which are the real unique
models. Due to the raising hardware standards onmobile devices, it is possible for
the devices to train their own models. Like that the devices will train their own
highly specialized model for their own user. Once in a while, the devices send
their already trained model data (not the personal data) to the server. There the
server model will be adjusted, so the actual trends of the whole user community

40

will be covered by the model. This model is set to be the new initial model that
all devices are using. For not having any downsides for the users, while the server
model gets updated, this happens only when the device is idle, connected toWiFi
and charging. Also, the testing is done on the devices, therefore the newly adopted
model from the server is sent to the devices and tested for functionality.

The big benefit of this is that the data used for training and testing, which is highly
personal, never leaves the devices while still capturing all data that is available.
This way it is possible to train highly accurate models while not having to store
tons of (probably personal) data in the cloud. But there is no such thing as a free
lunch, normal machine learning algorithms are built with homogeneously and
large datasets on powerful hardware which is always available for training. With
Federated Learning there are other circumstances, the mobile devices are less
powerful, the training data is distributed across millions of devices and these are
not always available for training. Exactly for this TensorFlow Federated (TFF22)
has been created. TFF is a lightweight form of TensorFlow created for Federated
Learning.

3.3.2 Deployment Strategies

In the following, we discuss commonways for wrapping trainedmodels as deploy-
able services, namely deployingMLmodels asDocker Containers to Cloud Instances
and as Serverless Functions.

Deploying MLModels as Docker Containers

As of now, there is no standard, open solution to ML model deployment. As
ML model inference being considered stateless, lightweight, and idempotent, con-
tainerization becomes the de-facto standard for delivery. This means we deploy a
container that wraps an ML model inference code. For on-premise, cloud, or hy-
brid deployments, Docker is considered to be de-facto standard containerization
technology.

22https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041

41

https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041

Figure 3.8: Federated Learning (source:
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html)

One ubiquitous way is to package the whole ML tech stack (dependencies) and
the code for ML model prediction into a Docker container. Then Kubernetes or
an alternative (e.g. AWS Fargate) does the orchestration. TheMLmodel function-
ality, such as prediction, is then available through a REST API (e.g. implemented
as Flask application23)

Deploying MLModels as Serverless Functions

Various cloud vendors already provide machine-learning platforms, and you can
deploy your model with their services. Examples are Amazon AWS Sagemaker,
Google Cloud AI Platform, Azure Machine Learning Studio, and IBM Watson
Machine Learning, to name a few. Commercial cloud services also provide con-

23https://flask.palletsprojects.com/en/1.1.x/

42

https://flask.palletsprojects.com/en/1.1.x/

Figure 3.9: Infrastructure: ML Model Deployment to Cloud Instances (source: ml-ops.org)

tainerization of ML models such as AWS Lambda and Google App Engine servlet
host.

In order to deploy an ML model as a serverless function, the application code
and dependencies are packaged into .zip files, with a single entry point function.
This function then could be managed by major cloud providers such as Azure
Functions, AWS Lambda, or Google Cloud Functions. However, attention should
be paid to possible constraints of the deployed artifacts such as the size of the
artifact.

43

Figure 3.10: Infrastructure: ML Model Deployment as Serverless Function (source: ml-ops.org)

44

4 MLOps Principles
As machine learning and AI propagate in software products and services, we
need to establish best practices and tools to test, deploy, manage, and monitor
ML models in real-world production. In short, with MLOps, we strive to avoid
“technical debt” in machine learning applications.

SIGMLOps defines “an optimal MLOps experience [as] one where Machine Learning
assets are treated consistently with all other software assets within a CI/CD environment.
Machine Learning models can be deployed alongside the services that wrap them and
the services that consume them as part of a unified release process.” By codifying these
practices, we hope to accelerate the adoption of ML/AI in software systems and
fast delivery of intelligent software.

In the following, we describe a set of important concepts in MLOps such as
Iterative-Incremental Development, Automation, Continuous Deployment, Versioning,
Testing, Reproducibility, and Monitoring.

4.1 Iterative-Incremental Process in
MLOps

The complete MLOps process includes three broad phases of “Designing the
ML-powered application”, “ML Experimentation and Development”, and “ML
Operations”.

The first phase is devoted to business understanding, data understanding and design-
ing the ML-powered software. In this stage, we identify our potential user, design
the machine learning solution to solve its problem, and assess the further devel-
opment of the project. Mostly, we would act within two categories of problems -
either increasing the productivity of the user or increasing the interactivity of our
application.

Initially, we define ML use-cases and prioritize them. The best practice for ML
projects is to work on one ML use case at a time. Furthermore, the design phase
aims to inspect the available data that will be needed to train our model and to
specify the functional and non-functional requirements of our ML model. We

45

Figure 4.1: Three broad phases of the Iterative-Incremental Process in MLOps

should use these requirements to design the architecture of the ML-application,
establish the serving strategy, and create a test suite for the future ML model.

The follow-up phase “MLExperimentation andDevelopment” is devoted to verifying
the applicability of ML for our problem by implementing Proof-of-Concept for ML
Model. Here, we run iteratively different steps, such as identifying or polishing the
suitable ML algorithm for our problem, data engineering, and model engineering. The
primary goal in this phase is to deliver a stable quality ML model that we will run
in production.

The main focus of the “ML Operations” phase is to deliver the previously devel-
oped ML model in production by using established DevOps practices such as
testing, versioning, continuous delivery, and monitoring.

All three phases are interconnected and influence each other. For example, the
design decision during the design stage will propagate into the experimentation

46

phase and finally influence the deployment options during the final operations
phase.

4.2 Automation
The level of automation of the Data, ML Model, and Code pipelines determines
the maturity of the ML process. With increased maturity, the velocity for the
training of new models is also increased. The objective of an MLOps team is
to automate the deployment of ML models into the core software system or
as a service component. This means, to automate the complete ML-workflow
steps without any manual intervention. Triggers for automated model training
and deployment can be calendar events, messaging, monitoring events, as well as
changes on data, model training code, and application code.

Automated testing helps discover problems quickly and in early stages. This en-
ables fast fixing of errors and learning from mistakes.

To adopt MLOps, we see three levels of automation, starting from the initial level
with manual model training and deployment, up to running both ML and CI/CD
pipelines automatically.

1. Manual process.
This is a typical data science process, which is performed at the beginning of
implementing ML. This level has an experimental and iterative nature. Every
step in each pipeline, such as data preparation and validation, model training
and testing, are executed manually. The common way to process is to use
Rapid Application Development (RAD) tools, such as Jupyter Notebooks.

2. ML pipeline automation.
The next level includes the execution of model training automatically. We
introduce here the continuous training of the model. Whenever new data is
available, the process ofmodel retraining is triggered. This level of automation
also includes data and model validation steps.

47

3. CI/CD pipeline automation.
In the final stage, we introduce a CI/CD system to perform fast and reliable
MLmodel deployments in production. The core difference from the previous
step is that we now automatically build, test, and deploy the Data, ML Model,
and the ML training pipeline components.

The following picture shows the automated ML pipeline with CI/CD routines:

Figure 4.2: Automated ML pipeline with CI/CD (source: MLOps: Continuous delivery and automation
pipelines in machine learning)

The MLOps stages that reflect the process of ML pipeline automation are ex-
plained in the following table:

48

After analyzing theMLOps Stages, wemight notice that theMLOps setup requires
several components to be installed or prepared. The following table lists those
components:

49

Further reading: “MLOps: Continuous delivery and automation pipelines in ma-
chine learning”1

1https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-autom
ation-pipelines-in-machine-learning#top_of_page

50

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning#top_of_page
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning#top_of_page

4.3 Continuous X
To understandModel deployment, we first specify the “ML assets” as ML model,
its parameters and hyperparameters, training scripts, training and testing data.
We are interested in the identity, components, versioning, and dependencies of
these ML artifacts. The target destination for an ML artifact may be a (micro-
) service or some infrastructure components. A deployment service provides
orchestration, logging,monitoring, and notification to ensure that theMLmodels,
code and data artifacts are stable.

MLOps is an ML engineering culture that includes the following practices: -
Continuous Integration (CI) extends the testing and validating code and compo-
nents by adding testing and validating data and models. - Continuous Delivery
(CD) concerns with the delivery of an ML training pipeline that automatically
deploys another ML model prediction service. - Continuous Training (CT) is
unique to ML systems property, which automatically retrains ML models for re-
deployment. -ContinuousMonitoring (CM) concerns with monitoring produc-
tion data andmodel performancemetrics, which are bound to businessmetrics.

4.4 Versioning
The goal of versioning is to treat ML training scripts, MLmodels, and data sets for
model training as first-class citizens in DevOps processes by tracking MLmodels
and data sets with version control systems. The common reasonswhenMLmodel
and data changes (according to SIG MLOps2) are the following:

• ML models can be retrained based on new training data.
• Models may be retrained based on new training approaches.
• Models may be self-learning.
• Models may degrade over time.
• Models may be deployed in new applications.
• Models may be subject to attack and require revision.
• Models can be quickly rolled back to a previous serving version.

2https://lists.cd.foundation/g/sig-mlops

51

https://lists.cd.foundation/g/sig-mlops

• Corporate or government compliance may require audit or investigation on
both ML model or data, hence we need access to all versions of the produc-
tionized ML model.

• Data may reside across multiple systems.
• Data may only be able to reside in restricted jurisdictions.
• Data storage may not be immutable.
• Data ownership may be a factor.

Analogous to the best practices for developing reliable software systems, every
ML model specification (ML training code that creates an ML model) should go
through a code review phase. Furthermore,

every ML model specification should be versioned in a VCS to make the training
of ML models auditable and reproducible.

Further reading: How do we manage ML models? Model Management Frame-
works3

4.5 Experiments Tracking
Machine Learning development is a highly iterative and research-centric process.
In contrast to the traditional software development process, in ML development,
multiple experiments onmodel training can be executed in parallel beforemaking
the decision what model will be promoted to production.

The experimentation during ML development might have the following scenario:
One way to track multiple experiments is to use different (Git-) branches, each
dedicated to a separate experiment. The output of each branch is a trained model.
Depending on the selected metric, the trained ML models are compared with
each other, and the appropriate model is selected. Such low friction branching
is fully supported by the tool DVC4, which is an extension of Git and an open-
source version control system formachine learning projects. Another popular tool

3https://www.inovex.de/blog/machine-learning-model-management/
4https://dvc.org/

52

https://www.inovex.de/blog/machine-learning-model-management/
https://dvc.org/

for ML experiments tracking is the Weights and Biases (wandb)5 library, which
automatically tracks the hyperparameters and metrics of the experiments.

4.6 Testing

Figure 4.3: ML Systems require extensive Testing and Monitoring (source: “The ML Test Score: A Rubric for
ML Production Readiness and Technical Debt Reduction” by E.Breck et al. 2017)

6

The complete development pipeline includes three essential components, data
pipeline, ML model pipeline, and application pipeline. In accordance with
this separation, we distinguish three scopes for testing in ML systems: tests for
features and data, tests for model development, and tests for ML infrastruc-
ture.

4.6.1 Features and Data Tests

• Data validation: Automatic check for data and features schema/domain.

• Action: In order to build a schema (domain values), calculate statistics
from the training data. This schema can be used as expectation definition or
semantic role for input data during training and serving stages.

5https://www.wandb.com/
6https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86
b7addfea4c419b9100c6cdd26cacea.pdf

53

https://www.wandb.com/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf

• Features importance test to understand whether new features add a predictive
power.

• Action: Compute correlation coefficient on features columns.
• Action: Train model with one or two features.
• Action: Use the subset of features “One of k left out and train a set of

different models.
• Measure data dependencies, inference latency, and RAM usage for each new

feature. Compare it with the predictive power of the newly added features.
• Drop out unused/deprecated features from your infrastructure and docu-

ment it.

• Features and data pipelines should be policy-compliant (e.g. GDPR). These
requirements should be programmatically checked in both development and
production environments.

• Feature creation code should be tested by unit tests (to capture bugs in fea-
tures).

4.6.2 Tests for Reliable Model Development

We need to provide specific testing support for detecting ML-specific errors.

• TestingML training should include routines, which verify that algorithmsmake
decisions aligned to business objective.
This means that ML algorithm loss metrics (MSE, log-loss, etc.) should corre-
late with business impact metrics (revenue, user engagement, etc.)

• Action: The loss metrics - impact metrics relationship can be measured in
small scale A/B testing using an intentionally degraded model.

• Further reading: Selecting the RightMetric for evaluatingMachine Learning
Models. here 17, here 28

7https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-par
t-1-a99d7d7414e4

8https://medium.com/usf-msds/choosing-the-right-metric-for-evaluating-machine-learning-m
odels-part-2-86d5649a5428

54

https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-evaluating-machine-learning-models-part-2-86d5649a5428
https://medium.com/usf-msds/choosing-the-right-metric-for-evaluating-machine-learning-models-part-2-86d5649a5428

• Model staleness test.
The model is defined as stale if the trained model does not include up-to-date
data and/or does not satisfy the business impact requirements.
Stale models can affect the quality of prediction in intelligent software.

• Action: A/B experiment with older models. Including the range of ages to
produce an Age vs. Prediction Quality curve to facilitate the understanding of
how often the ML model should be trained.

• Assessing the cost of more sophisticated ML models.

• Action: ML model performance should be compared to the simple baseline
ML model (e.g. linear model vs neural network).

• Validating performance of a model.

• It is recommended to separate the teams and procedures collecting the
training and test data to remove the dependencies and avoid false method-
ology propagating from the training set to the test set (source9).

• Action: Use an additional test set, which is disjoint from the training and
validation sets. Use this test set only for a final evaluation.

• Fairness/Bias/Inclusion testing for the ML model performance.

• Action: Collect more data that includes potentially under-represented cate-
gories.

• Action: Examine input features if they correlate with protected user cate-
gories.

• Further reading: “Tour of Data Sampling Methods for Imbalanced Classifi-
cation”10

• Conventional unit testing for any feature creation, ML model specification
code (training), and testing.

• Model governance testing (coming soon)

9https://arxiv.org/pdf/2003.05155.pdf
10https://machinelearningmastery.com/data-sampling-methods-for-imbalanced-classification/

55

https://arxiv.org/pdf/2003.05155.pdf
https://machinelearningmastery.com/data-sampling-methods-for-imbalanced-classification/

4.6.3 ML infrastructure test

• Training theMLmodels should be reproducible, whichmeans that training the
ML model on the same data should produce identical ML models.

• Diff-testing of ML models relies on deterministic training, which is hard to
achieve due to non-convexity of the ML algorithms, random seed genera-
tion, or distributed ML model training.

• Action: determine the non-deterministic parts in the model training code
base and try to minimize non-determinism.

• Test ML API usage. Stress testing.

• Action: Unit tests to randomly generate input data and train the model for
a single optimization step (e.g., gradient descent).

• Action: Crash tests for model training. The ML model should restore from
a checkpoint after a mid-training crash.

• Test the algorithmic correctness.

• Action: Unit test that is not intended to complete theMLmodel training but
to train for a few iterations and ensure that loss decreases while training.

• Avoid: Diff-testing with previously built ML models because such tests are
hard to maintain.

• Integration testing: The full ML pipeline should be integration tested.

• Action: Create a fully automated test that regularly triggers the entire ML
pipeline.
The test should validate that the data and code successfully finish each stage
of training and the resulting ML model performs as expected.

• All integration tests should be run before theMLmodel reaches the produc-
tion environment.

• Validating the ML model before serving it.

• Action: Setting a threshold and testing for slow degradation inmodel quality
over many versions on a validation set.

• Action: Setting a threshold and testing for sudden performance drops in a
new version of the ML model.

56

• ML models are canaried before serving.

• Action: Testing that anMLmodel successfully loads into production serving
and the prediction on real-life data is generated as expected.

• Testing that the model in the training environment gives the same score as the
model in the serving environment.

• Action: The difference between the performance on the holdout data and
the “nextday” data.
Some difference will always exist.
Pay attention to large differences in performance between holdout and
“nextday” data because it may indicate that some time-sensitive features
cause ML model degradation.

• Action: Avoid result differences between training and serving environments.
Applying a model to an example in the training data and the same example
at serving should result in the same prediction.
A difference here indicates an engineering error.

4.7 Monitoring
Once theMLmodel has beendeployed, it needs to bemonitored to ensure that the
ML model performs as expected. The following checklist for model monitoring
activities in production is adopted from “The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction” by E.Breck et al. 2017:11

• Monitor dependency changes throughout the complete pipeline result in noti-
fication.

• Data version change.
• Changes in source system.
• Dependencies upgrade.

• Monitor data invariants in training and serving inputs: Alert if data does not
match the schema, which has been specified in the training step.

11https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86
b7addfea4c419b9100c6cdd26cacea.pdf

57

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf

• Action: tuning of alerting threshold to ensure that alerts remain useful and
not misleading.

• Monitor whether training and serving features compute the same value.

• Since the generation of training and serving features might take place in
physically separated locations, we must carefully test that these different
code paths are logically identical.

• Action: (1) Log a sample of the serving traffic.

(2) Compute distribution statistics (min, max, avg, values, % of missing
values, etc.) on the training features and the sampled serving features
and ensure that they match.

• Monitor the numerical stability of the ML model.

• Action: trigger alerts for the occurrence of any NaNs or infinities.

• Monitor computational performance of an ML system.
Both dramatic and slow-leak regression in computational performance should
be notified.

• Action: measure the performance of versions and components of code, data,
and model by pre-setting the alerting threshold.

• Action: collect system usage metrics like GPU memory allocation,

network traffic, and disk usage. Thesemetrics are useful for cloud costs estimations.
- Monitor how stale the system in production is. - Measure the age of the model.
Older ML models tend to decay in performance. - Action: Model monitoring is a
continuous process; therefore, it is important to identify the elements for mon-
itoring and create a strategy for model monitoring before reaching production. -
Monitor the processes of feature generation as they impact themodel. - Action: re-
run feature generation on a frequent basis. -Monitor degradation of the predictive
quality of the ML model on served data.
Both dramatic and slow-leak regression in prediction quality should be notified.
- Degradation might happen due to changes in data or differing code paths, etc.
- Action: Measure statistical bias in predictions (avg in predictions in a slice of
data).
Models should have nearly zero bias. - Action: If a label is available immediately

58

after the prediction is made, we canmeasure the quality of prediction in real-time
and identify problems.

The picture below shows that the model monitoring can be implemented by
tracking the precision, recall, and F1-score of the model prediction along with the
time. The decrease in precision, recall, and F1-score triggers the model retraining,
which leads to model recovery.

Figure 4.4: ML Model Decay Monitoring (source: ml-ops.org)

4.8 “ML Test Score” System
The “ML Test Score” measures the overall readiness of the ML system for produc-
tion. The finalML Test Score is computed as follows:

59

• For each test, half a point is awarded for executing the test manually, with the
results documented and distributed.

• A full point is awarded if there is a system in place to run that test automatically
on a repeated basis.

• Sum the score of each of the four sections individually: Data Tests,Model Tests,
ML Infrastructure Tests, and Monitoring.

• The final ML Test Score is computed by taking the minimum of the scores
aggregated for each of the sections: Data Tests, Model Tests, ML Infrastructure
Tests, and Monitoring.

After computing theML Test Score, we can reason about the readiness of the ML
system for production. The following table provides the interpretation ranges:

Source: “TheMLTest Score: A Rubric forMLProduction Readiness and Technical
Debt Reduction” by E.Breck et al. 201712

12https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86
b7addfea4c419b9100c6cdd26cacea.pdf

60

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf

4.9 Reproducibility
Reproducibility in a machine learning workflow means that every phase of either
data processing, ML model training, and ML model deployment should produce
identical results given the same input.

61

62

4.10 Loosely Coupled Architecture
(Modularity)

According to Gene Kim et al., in their book “Accelerate”, “high performance [in
software delivery] is possible with all kinds of systems, provided that systems—and
the teams that build and maintain them — are loosely coupled. This key architectural
property enables teams to easily test and deploy individual components or services even
as the organization and the number of systems it operates grow—that is, it allows
organizations to increase their productivity as they scale.”

Additionally, Gene Kim et al., recommend to “use a loosely coupled architecture.
This affects the extent to which a team can test and deploy their applications on de-
mand, without requiring orchestration with other services. Having a loosely coupled
architecture allows your teams to work independently, without relying on other teams
for support and services, which in turn enables them to work quickly and deliver value
to the organization.”

Regarding ML-based software systems, it can be more difficult to achieve loose
coupling between machine learning components than for traditional software
components. ML systems have weak component boundaries in several ways. For
example, the outputs ofMLmodels can be used as the inputs to anotherMLmodel
and such interleaved dependencies might affect one another during training and
testing.

Basic modularity can be achieved by structuring the machine learning project. To
set up a standard project structure, we recommend using dedicated templates
such as

• Cookiecutter Data Science Project Template13

• The Data Science Lifecycle Process Template14

• PyScaffold15

13https://drivendata.github.io/cookiecutter-data-science/
14https://github.com/dslp/dslp-repo-template
15https://github.com/pyscaffold/pyscaffold

63

https://drivendata.github.io/cookiecutter-data-science/
https://github.com/dslp/dslp-repo-template
https://github.com/pyscaffold/pyscaffold

4.11 ML-based Software Delivery Metrics
(4 metrics from “Accelerate”)

In the most recent study on the state of DevOps16, the authors emphasized
four key metrics that capture the effectiveness of the software development and
delivery of elite/high performing organizations: Deployment Frequency, Lead Time
for Changes, Mean Time To Restore, and Change Fail Percentage. These metrics have
been found useful17 to measure and improve one’s ML-based software delivery.
In the following list, we give the definition of each of the metrics and make the
connection to MLOps.

Deployment Frequency

• DevOps:

• Question: “How often does your organization deploy code to production or
release it to end-users?”

• MLOps:

• Question: “ML Model Deployment Frequency depends on:”

1. Model retraining requirements (ranging from less frequent to online
training). Two aspects are crucial for model retraining: 1.1. Model decay
metric. 1.2. New data availability.

2. The level of automation of the deployment process, which might range
between manual deployment and fully automated CI/CD pipeline.

Lead Time for Changes

• DevOps:

• Question: “How long does it take to go from code committed to code
successfully running in production?”

16https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
17https://www.thoughtworks.com/radar/techniques/four-key-metrics

64

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://www.thoughtworks.com/radar/techniques/four-key-metrics

• MLOps:

• Question: “ML Model Lead Time for Changes depends on:”

1. Duration of the explorative phase in Data Science to finalize the ML
model for deployment/serving.

2. Duration of the ML model training.
3. The number and duration of manual steps during the deployment pro-

cess.

Mean Time To Restore (MTTR)

• DevOps:

• Question: “How long does it generally take to restore service when a service
incident or a defect that impacts users occurs (e.g., unplanned outage or
service impairment)?”

• MLOps:

• Question: “ML Model MTTR depends on:”

• The number and duration of manually performed model debugging and
model deployment steps.

• In cases where the ML model should be retrained, MTTR also depends
on the duration of the ML model training.

• Alternatively, MTTR refers to the duration of the rollback of the ML
model to the previous version.

Change Failure Rate

• DevOps:

• Question: “What percentage of changes to production or released to users
result in degraded service (e.g., lead to service impairment or service out-
age) and subsequently require remediation (e.g., require a hotfix, rollback,
fix forward, patch)?”

65

• MLOps:

• Question: “ML Model Change Failure Rate can be expressed in the differ-
ence between the currently deployed ML model performance metrics and
the previous model’s metrics, such as Precision, Recall, F1, accuracy, AUC,
ROC, false positives, etc. ML Model Change Failure Rate is also related to
A/B testing.”

To improve the effectiveness of the ML development and delivery process, one
should measure the above four key metrics. A practical way to achieve such
effectiveness is to implement the CI/CD pipeline first and adopt test-driven de-
velopment for Data, ML Model, and Software Code pipelines.

4.12 Summary of MLOps Principles and
Best Practices

The complete ML development pipeline includes three levels where changes can
occur: Data, ML Model, and Code. This means that in machine learning-based
systems, the trigger for a build might be the combination of a code change, data
change, or model change. The following list summarizes the MLOps principles
for building ML-based software:

Versioning

• Data:

1. Data preparation pipelines
2. Features store
3. Datasets
4. Metadata

66

• MLModel:

1. ML model training pipeline
2. ML model (object)
3. Hyperparameters
4. Experiment tracking

• Code:

1. Application code
2. Configurations

Testing

• Data:

1. Data Validation (error detection)
2. Feature creation unit testing

• MLModel:

1. Model specification is unit tested
2. ML model training pipeline is integration tested
3. ML model is validated before being operationalized
4. ML model staleness test (in production)
5. Testing ML model relevance and correctness
6. Testing non-functional requirements (security, fairness, interpretability)

• Code:

1. Unit testing
2. Integration testing for the end-to-end pipeline

Automation

• Data:

1. Data transformation
2. Feature creation and manipulation

67

• MLModel:

1. Data engineering pipeline
2. ML model training pipeline
3. Hyperparameter/Parameter selection

• Code:

1. ML model deployment with CI/CD
2. Application build

Reproducibility

• Data:

1. Backup data
2. Data versioning
3. Extract metadata
4. Versioning of feature engineering

• MLModel:

1. Hyperparameter tuning is identical between dev and prod
2. The order of features is the same
3. Ensemble learning: the combination of ML models is the same
4. The model pseudo-code is documented

• Code:

1. Versions of all dependencies in dev and prod are identical
2. Same technical stack for dev and production environments
3. Reproducing results by providing container images or virtual machines

Deployment

• Data:

1. Feature store is used in dev and prod environments

68

• MLModel:

1. Containerization of the ML stack
2. REST API
3. On-premise, cloud, or edge

• Code:

1. On-premise, cloud, or edge

Monitoring

• Data:

1. Data distribution changes (training vs. serving data)
2. Training vs. serving features

• MLModel:

1. ML model decay
2. Numerical stability
3. Computational performance of the ML model

• Code:

1. Predictive quality of the application on serving data

Along with theMLOps principles, following best practices should help reduce the
“technical debt” of the ML project.

The table on the following page summarizes different best practices.

69

70

5 CRISP-ML(Q). The ML
Lifecycle Process.

The machine learning community is still trying to establish a standard process
model for machine learning development. As a result, manymachine learning and
data science projects are still not well organized. Results are not reproducible. In
general, such projects are conducted in an ad-hoc manner. To guide ML practi-
tioners through the development life cycle, the Cross-Industry Standard Process
for the development of Machine Learning applications with Quality assurance
methodology (CRISP-ML(Q))1 was recently proposed.We review the core phases
of the ML development process model (see Figure 1). There is a particular order
of the individual stages. Still, machine learning workflows are fundamentally
iterative and exploratory, so that depending on the results from the later phases,
we might re-examine earlier steps.

Figure 5.1: Machine Learning Development Life Cycle Process (source: ml-ops.org)

Overall, the CRISP-ML(Q) process model describes six phases:

1https://arxiv.org/pdf/2003.05155.pdf

71

https://arxiv.org/pdf/2003.05155.pdf

1. Business and Data Understanding
2. Data Engineering (Data Preparation)
3. Machine Learning Model Engineering
4. Quality Assurance for Machine Learning Applications
5. Deployment
6. Monitoring and Maintenance.

For each phase of the processmodel (see Figure 2), the quality assurance approach
in CRISP-ML(Q) requires the definition of requirements and constraints (e.g.,
performance, data quality requirements, model robustness, etc.), instantiation of
the specific tasks (e.g., ML algorithm selection, model training, etc.), specifica-
tion of risks that might negatively impact the efficiency and success of the ML
application (e.g., bias, overfitting, lack of reproducibility, etc.), quality assurance
methods to mitigate risks when these risks need to be diminished (e.g., cross-
validation, documenting process and results, etc.).

In the following, we describe each of the six CRISP-ML(Q) stages with respect to
the quality assurance structure.

5.1 Business and Data Understanding
Developing machine learning applications starts with identifying the scope of the
ML application, the success criteria, and a data quality verification. The goal of
this first phase is to ensure the feasibility of the project.

We gather success criteria along with business, machine learning, and economic
success criteria during this phase. These criteria are required to be measurable.
Therefore, defining clear and measurable Key Performance Indicators (KPI) such
as “time savings per user and session” is required. A helpful approach is to define
a non-ML heuristic benchmark2 to communicate the impact of machine learning
tasks with the business stakeholders.

Confirming the feasibility before setting up the ML project is a best practice in an
industrial setting. Applying theMachine Learning Canvas3 framework would be a

2https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/ch08.html
3https://www.louisdorard.com/machine-learning-canvas

72

https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/ch08.html
https://www.louisdorard.com/machine-learning-canvas

Figure 5.2: CRISP-ML(Q) approach for quality assurance for each of the six phases (source: ml-ops.org)

structuredway to perform this task. TheMLCanvas guides through the prediction
and learning phases of the ML application. In addition, it enables all stakeholders
to specify data availability, regulatory constraints, and application requirements
such as robustness, scalability, explainability, and resource demand.

As data guides the process, data collection and data quality verification are es-
sential to achieving business goals. Therefore, one crucial requirement is the
documentation of the statistical properties of data and the data generating pro-
cess. Similarly, data requirements should be stated and documented as well, as it
becomes a foundation for data quality assurance during the operational phase of
the ML project.

73

5.2 Data Engineering (Data Preparation)
The second phase of the CRISP-ML(Q) process model aims to prepare data for
the following modeling phase. Data selection, data cleaning, feature engineering, and
data standardization tasks are performed during this phase.

We identify valuable and necessary features for future model training by using
either filter methods, wrapper methods, or embedded methods for data selection.
Furthermore, we select data by discarding samples that do not satisfy data quality
requirements. At this point, we also might tackle the problem of unbalanced
classes by applying over-sampling or under-sampling strategies.

The data cleaning task implies that we perform error detection and error correc-
tion steps for the available data. Adding unit testing for data4 will mitigate the risk
of error propagation to the next phase. Depending on the machine learning task,
we might need to perform feature engineering and data augmentation activities.
For example, such methods include one-hot encoding, clustering, or discretiza-
tion of continuous attributes.

The data standardization task denotes the process of unifying the ML tools’ input
data to avoid the risk of erroneous data. Finally, the normalization task will
mitigate the risk of bias to features on larger scales. We build data and input data
transformation pipelines for data pre-processing and feature creation to ensure
the ML application’s reproducibility during this phase.

5.3 Machine Learning Model Engineering
The modeling phase is the ML-specific part of the process. This phase aims to
specify one or several machine learning models to be deployed in the production.
The translation to the ML task depends on the business problem that we are
trying to solve. Constraints and requirements from the Business and Data Un-
derstanding phase will shape this phase. For example, the application domain’s
model assessment metrics5 might include performance metrics, robustness, fairness,

4https://ssc.io/pdf/p1993-schelter.pdf
5https://arxiv.org/pdf/1906.10742.pdf

74

https://ssc.io/pdf/p1993-schelter.pdf
https://arxiv.org/pdf/1906.10742.pdf

scalability, interpretability, model complexity degree, and model resource demand. We
should adjust the importance of each of thesemetrics according to the use case.

Generally, the modeling phase includes model selection, model specialization, and
model training tasks. Additionally, depending on the application, we might use a
pre-trained model, compress the model, or apply ensemble learning methods to
get the final ML model.

Onemain complaint aboutmachine learning projects is the lack of reproducibility.
Thereforewe should ensure that themethod and the results of themodeling phase
are reproducible by collecting the model training method’s metadata. Typically
we collect the following metadata: algorithm, training, validation and testing data
set, hyper-parameters, and runtime environment description. The result repro-
ducibility assumes the validation of the model’s mean performance on different
random seeds. Following best practices, documenting trained models increases
the transparency and explainability in ML projects. A helpful framework here is
the “Model Cards Toolkit”6.

Many phases in ML development are iterative. Sometimes, we might need to
review the business goals, KPIs, and available data from the previous steps to
adjust the outcomes of the ML model results.

Finally, we package the ML workflow in a pipeline to create repeatable model
training during the modeling phase.

5.4 Evaluating Machine Learning Models
Consequently,model training is followedby amodel evaluation phase, also known
as offline testing. During this phase, the performance of the trained model needs
to be validated on a test set. Additionally, themodel robustness should be assessed
using noisy or wrong input data. Furthermore, it is best practice to develop an
explainableMLmodel to provide trust, meet regulatory requirements, and govern
humans in ML-assisted decisions.

6https://arxiv.org/pdf/1810.03993.pdf

75

https://arxiv.org/pdf/1810.03993.pdf

Finally, the model deployment decision should be met automatically based on
success criteria or manually by domain and ML experts. Similar to the modeling
phase, all outcomes of the evaluation phase need to be documented.

5.5 Deployment
The ML model deployment denotes a process of the ML model integration into
the existing software system. After succeeding in the evaluation step in the ML
development life cycle, the ML model is graduated to be deployed in the (pre-)
production environment. Deployment approaches are specified during the first
phase of the ML development life cycle. These approaches will differ depending
on the use case and the training and prediction modus, either batch or online.
For example, deploying an ML model means exposing its predictive functionality
as interactive dashboards, precomputed predictions, wrapping the ML model
as a plug-in component in a microkernel software architecture7, or web service
endpoint in a distributed system.

The MLmodel deployment includes the following tasks: inference hardware defini-
tion,model evaluation in a production environment (online testing, e.g., A/B tests),
providing user acceptance and usability testing, providing a fall-back plan for model
outages, and setting up the deployment strategy to roll out the newmodel gradually
(e.g. canary or green/blue deployment).

5.6 Monitoring andMaintenance
Once the ML model has been put into production, it is essential to monitor
its performance and maintain it. When an ML model performs on real-world
data, the main risk is the “model staleness” effect when the performance of
the ML model drops as it starts operating on unseen data. Furthermore, model
performance is affected by hardware performance and the existing software stack.
Therefore, the best practice to prevent themodel performance drop is to perform
the monitoring task when the model performance is continuously evaluated to
decide whether the model needs to be re-trained. This is known as the Continued

7https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch03.html

76

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch03.html

Model Evaluation8 pattern. The decision from the monitoring task leads to the
second task - updating the MLmodel. Additionally to monitoring and re-training,
reflecting on the business use case and theML taskmight be valuable for adjusting
the ML process.

5.7 Conclusion
Getting ML models in production involves many interplaying components and
processes. In this article, we reviewed the CRISP-ML(Q) development lifecycle
model. Overall, CRISP-ML(Q) is a systematic processmodel formachine learning
software development that creates an awareness of possible risks and emphasizes
quality assurance to diminish these risks to ensure the ML project’s success. The
following list summarizes the CRISP-ML(Q) core phases and the corresponding
tasks:

CRISP-ML(Q) Phases and Tasks

1. Business and Data Understanding

• Define business objectives
• Translate business objectives into ML objectives
• Collect and verify data
• Assess the project feasibility
• Create POC

2. Data Engineering

• Feature selection
• Data selection
• Class balancing
• Cleaning data (noise reduction, data imputation)
• Feature engineering (data construction)
• Data augmentation
• Data standardization

8https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

77

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

3. MLModel Engineering

• Define quality measure of the model
• ML algorithm selection (baseline selection)
• Adding domain knowledge to specialize the model
• Model training
• Optional: applying transfer learning (using pre-trained models)
• Model compression
• Ensemble learning
• Documenting the ML model and experiments

4. MLModel Evaluation

• Validate model’s performance
• Determine robustness
• Increase model’s explainability
• Make a decision whether to deploy the model
• Document the evaluation phase

5. Model Deployment

• Evaluate model under production conditions
• Assure user acceptance and usability
• Model governance
• Deploy according to the selected strategy (A/B testing, multi-armed ban-

dits)

6. Model Monitoring and Maintenance

• Monitor the efficiency and efficacy of the model prediction serving
• Compare to the previously specified success criteria (thresholds)
• Retrain model if required
• Collect new data
• Perform labeling of the new data points
• Repeat tasks from the Model Engineering and Model Evaluation phases
• Continuous integration, training, and deployment of the model

78

5.8 Acknowledgements
We would like to thank Alexey Grigoriev9 for insightful discussions and his valu-
able feedback for this chapter.

Machine Learning Operations (MLOps) defines language-, framework-,
platform-, and infrastructure-agnostic practices to design, develop, and maintain
machine learning applications. However, getting ML in production implies
many interplaying components. Moreover, with the currently exploding number
of MLOps platforms and frameworks, it is challenging to keep up with the
development pace. One of the main issues for ML-adopters is technology
integration and compatibility.

According to the current surveys10, 49% of organizations experience challenges
with integrating their ML tooling, frameworks, and languages technology stack.
The reason for this challenge is that ML technology is still evolving and is in its
early stages. Additionally, the development of MLOps tooling is happening at a
fast pace, making the adoption of such a fast-developing infrastructure difficult
for getting ML-system into production sustainably.

To specify an architecture and infrastructure stack for Machine Learning
Operations, we suggest a general MLOps Stack Canvas framework designed
to be application- and industry-neutral.We align to the CRISP-ML(Q) model11

and describe the eleven components of the MLOps stack and line them up along
with the ML Lifecycle and the “AI Readiness”12 level to select the right amount of
MLOps processes and technlogy components.

9https://www.linkedin.com/in/agrigorev/
10https://info.algorithmia.com/tt-state-of-ml-2021
11https://ml-ops.org/content/crisp-ml
12https://services.google.com/fh/files/misc/ai_adoption_framework_whitepaper.pdf

79

https://www.linkedin.com/in/agrigorev/
https://info.algorithmia.com/tt-state-of-ml-2021
https://ml-ops.org/content/crisp-ml
https://services.google.com/fh/files/misc/ai_adoption_framework_whitepaper.pdf

6 MLOps Stack Canvas
The CRISP-ML(Q) provides a process - a set of steps that we will perform during
the machine learning development life cycle. Another aspect of ML development
is infrastructure components, such as tools, platforms, and frameworks needed
for successful ML model operations (see Figure 1).

Figure 6.1: Mapping the CRISP-ML(Q) process model to the MLOps stack (source: ml-ops.org)

Hence, building the infrastructure stack for MLOps is the next important part of
the ML project. However, given a lack of standardization in the ML development
process model and operations and the ever-growing number of tools, creating
an infrastructure stack is an overwhelming exercise for many ML aspiring teams.
Given the hype aroundMLOps tools, small teams with a small amount of data are

81

getting the impression thatMLOps solutions would require significant infrastruc-
ture investment.

According to the recent survey conducted by Algorithmia1, “the second greatest
ML challenge is technology integration and compatibility,” which indicates that many
organizations are still at the beginning of the ML life cycle. To support the un-
derstanding of your requirements for the ML system and the audit process of the
infrastructure components, we suggest an MLOps Stack Canvas framework (see
Figure 2).

We envision the MLOps Stack Canvas as help to architect the ML system. Similar
to the canonical BusinessModel Canvas, our canvas condenses themain elements
of a whole technology stack for an ML application into a single page. This frame-
work guides the development teams through the MLOps building blocks and
lets them answer the MLOps infrastructure-related questions and identify the
necessary tools chain.

The purpose of the MLOps Stack Canvas is to help you to structure workflows,
architecture, and infrastructure components for the MLOps stack in the ML
project. The scope of MLOps Stack Canvas is the following: + Ensuring that ML
model solutions have a (business) impact. + Planning the cost of the infrastruc-
ture components for the MLOps stack by considering three main areas: + Data
and code management + ML model management, and + Metadata management +
Planning the cost of the orchestration of the ML system to manage its life-cycle
andmaintainability by considering + Continuous integration/training/delivery for
ML assets + Monitoring to ensure the ML is achieving the business objectives
+ Alerting to deal with model failures. + Designing the ML system to fulfill: +
Reproducibility: versioning, feature store, and pipelines, + Reliability: models
should have few outages and safe failovers, and + Efficiency: model predictions
are fast and as cost-effective as possible.

Generally, the MLOps Stack Canvas2 consists of three main areas: Data and Code
Management, Model Management, and Metadata Management. Each of these areas
contains its own building blocks.

1https://info.algorithmia.com/tt-state-of-ml-2021
2https://miro.com/app/board/o9J_lfoc4Hg=/

82

https://info.algorithmia.com/tt-state-of-ml-2021
https://miro.com/app/board/o9J_lfoc4Hg=/

Figure 6.2: MLOps Stack Canvas to identify the infrastructure components (source: ml-ops.org)

Figure 2: MLOps Stack Canvas to identify the infrastructure components.

Please note that you might access the MLOps Stack Canvas3 as a Miro board and
it is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

In the following, we explain each of these blocks.

6.1 Blocks of the MLOps Stack Canvas

6.1.1 Value Proposition

The central component in the MLOps Stack Canvas is the Value Proposition.
Generally, a value proposition is a statement that outlines why a customer would

3https://miro.com/miroverse/mlops-stack-canvas/

83

https://miro.com/miroverse/mlops-stack-canvas/

benefit fromusing our software or service.We create awareness about pain points,
and the problem is being solved. An ML system generates predictions that are
a foundation for a later decision to increase productivity or improve user ex-
perience. Therefore, the ML system should create value for an end-user. The
value proposition section summarizes the key things that make up your software
product and why end-users should use it. The goal is to focus on solving the
real problem. To create an effective Value Proposition statement, we could use
Geoffrey Moore’s value positioning statement template:

“For (target customer) who (need or opportunity), our (product/service name) is (prod-
uct category) that (benefit).”

We recommend applying theMachine Learning Canvas4 through the initial phase
of the CRISP-ML(Q) process to achieve both the high-level prototype of the ML
system and to specify the value proposition. This value proposition could then
be re-used in the MLOps Stack Canvas. Another practical tool to specify the
value proposition is Value Proposition Canvas5. Generally, to formulate the value
proposition for the ML project, we should answer the following questions:

1. What are we trying to do for the end-user(s)?
2. What is the problem?
3. Why is this an important problem?
4. Who is our persona? (ML Engineer, Data Scientist, Operation/Business user)
5. Who owns the models in production?

6.1.2 Data Sources and Data Versioning

Data is a fundamental part of machine learning. Hence, the next component,
after articulating the business problem in Value Proposition, is “Data Sources
and Data Versioning.” The overall goal is to estimate the cost of data acquisition,
storage, and processing, which are the main activities during the Business and
Data Understanding and Data Preparation phases of the CRISP-ML(Q). Dataset
development and its further processing for ML algorithms, such as assigning

4https://www.louisdorard.com/machine-learning-canvas
5https://www.peterjthomson.com/2013/11/value-proposition-canvas/

84

https://www.louisdorard.com/machine-learning-canvas
https://www.peterjthomson.com/2013/11/value-proposition-canvas/

labels to unlabeled data points, might be costly. Since we consider ML models
and data as “first-class citizens,” data versioning might need to be implemented
to analyze the model performance every time new data is available.

In addition, data versioning might be a regulatory requirement to explain predic-
tions for every version of the learnedmodel. Generally, we distinguish three levels
of data versioning as described in “Machine Learning Engineering” by A.Burkov6:
1) Data is versioned as a snapshot at training time; 2) Versioning data and code as
one asset; 3) Using specialized data versioning systems.

The following considerations in the “Data Sources and Data Versioning” compo-
nent should be made:

1. Is this data versioning optional ormandatory? E.g., is data versioning a require-
ment for a system like a regulatory requirement?

2. What data sources are available? (e.g., owned, public, earned, paid data)
3. What is the storage for the above data? (e.g., data lake, DWH)
4. Is manual labeling required? Do we have human resources for it?
5. How to version data for each trained model?
6. What tooling is available for data pipelines/workflows?

Additionally to the current MLOps Stack Canvas, we recommend using the Data
LandscapeCanvas7 to create an overview of the available, accessible, and required
data sources for the ML project.

6.1.3 Data Analysis and Experiment Management

As described in CRISP-ML(Q), the initial phase of the project concerns tasks to
translate business objectives to ML tasks, to collect and understand data, and to
assess the feasibility of the project. To achieve these tasks, we run experiments
and implement a proof of concept. The “Data Analysis and Experiment Manage-
ment” block’s focus is the applicability of the ML technology for the specified
business goals and data preparation. Here, we should answer the following ques-
tions regarding tooling:

6http://www.mlebook.com/
7https://www.canvasgeneration.com/canvas/data-landscape/

85

http://www.mlebook.com/
https://www.canvasgeneration.com/canvas/data-landscape/

1. What programming language to use for analysis? (R, Python, Scala, Julia. Or
is SQL sufficient for analysis?)

2. Are there any infrastructure requirements for model training?
3. What ML-specific and business evaluation metrics need to be computed?
4. Reproducibility: What metadata about ML experiments is collected? (data

sets, hyperparameters)
5. What ML Framework know-how is there?

6.1.4 Feature Store andWorkflows

Being a crucial activity in machine learning, feature engineering is a process of
transforming raw input data into feature vectors that are suitable input formats
for machine learning algorithms before model training and prediction. The mo-
tivation for the “Feature Store,”8 as a new component in the MLOps stack, is
the need for management, reproducibility, discovery, and reuse of features across
ML projects and various data science teams. A feature store is defined as an
interface between data engineering and ML model engineering to separate the
feature engineering from the CRISP-ML(Q)model development process. Feature
stores promise the speed up in the development and operationalization of ML
models. However, as an advanced component, feature stores might add complex-
ity and its implementation need to be critically considered for every ML project:
1. Is this optional or mandatory? Do we have a data governance process such
that feature engineering has to be reproducible? 1. How are features computed
(workflows) during the training and prediction phases? 1. What are infrastructure
requirements for feature engineering? 1. “Buy or make” for feature stores? 1.
What databases are involved in feature storage? 1. Do we design APIs for feature
engineering?

6.1.5 Foundations (Reflecting DevOps)

Related to almost every phase of the ML lifecycle, the next block in the MLOps
Stack Canvas is about the inventory of the available DevOps infrastructure and
raising awareness about the current DevOps principles in the ML project. The

8https://eugeneyan.com/writing/feature-stores/

86

https://eugeneyan.com/writing/feature-stores/

intuition behind this activity is that we might extrapolate DevOps best practices
to the MLOps activities. However, suppose there are gaps in the traditional De-
vOps practices. In that case, we should improve them first before starting with
more complex activities such as model and data versioning, continuous model
training, or feature store. We, therefore, follow the guidelines of the Accelerate
State of DevOps Report9 and execute a self-assessment for the software delivery
performance by answering the following questions:

1. How do we maintain the code? What source version control system is used?
2. How do we monitor the system performance?
3. Do we need versioning for notebooks?
4. Is there a trunk-based development in place?
5. Deployment and testing automation: What is the CI/CD pipeline for the code-

base? What tools are used for it?
6. Do we track deployment frequency, lead time for changes, mean time to

restore, and change failure rate metrics10?

Following the DevOps principles has a direct impact on the software delivery
performance. As MLOps build upon DevOps, establishing the stable DevOps
culture for software projects is a prerequisite for successful ML projects.

6.1.6 Continuous Integration, Training, and Deployment: ML
Pipeline Orchestration

In the previous block, we reviewed the existing CI/CD pipelines for the software
delivery. Since the core software and ML model might have different release
cycles, we examine the continuous integration routine for theMLmodel release in
this block. Additionally, we introduce a new practice such as Continuous Training
(CT).

Generally, continuous integration denotes the building, testing, and packaging
of data and model pipelines. Continuous training is a new property, unique to

9https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite
-performance-productivity-and-scaling

10https://ml-ops.org/content/mlops-principles#ml-based-software-delivery-metrics-4-metrics-f
rom-accelerate

87

https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://ml-ops.org/content/mlops-principles#ml-based-software-delivery-metrics-4-metrics-from-accelerate
https://ml-ops.org/content/mlops-principles#ml-based-software-delivery-metrics-4-metrics-from-accelerate

ML systems concerned with automatically retraining ML models. We utilize the
pipeline pattern11, a software design pattern that implements the construction
and execution of a sequence of operations. Typically, data and ML pipelines
include operations such as data verification, feature and data selection, data clean-
ing, feature engineering, andmodel training. The set of acyclic pipelines construct
a directed acyclic graph (DAG) and denote the overall workflow job. Depending
on the maturity level, we might want to automate the data and model training
pipeline workflows to operationalize the model. We trigger data preparation and
model training pipelines whenever the new data is available, or the source code
for the pipeline has changed. In this block of the MLOps Stack Canvas, we should
clarify the processes and the toolchain for CI/CT in the CRISP-ML(Q) Model
Engineering phase:

1. How often are models expected to be retrained? What is the trigger for it
(scheduled, event-based, or ad hoc)?

2. Where does this happen (locally or on a cloud)?
3. What is the formalized workflow for anML pipeline? (e.g., Data prep -> model

training -> model eval & validation) What tech stack is used?
4. Is distributed model training required? Do we have an infrastructure for the

distributed training?
5. What is the workflow for the CI pipeline? What tools are used?
6. What are the non-functional requirements for the ML model12 (efficiency,

fairness, robustness, interpretability, etc.)? How are they tested? Are these
tests integrated into the CI/CT workflow?

6.1.7 Model Registry andModel Versioning

The next block of MLOps Stack Canvas concerns the ML model registry and
versioning component, which is an essential infrastructural part for the Model
Evaluation phase in the CRISP-ML(Q) process. The machine learning model is
an essential asset along with the data and the software code. Similar to code
versioning in traditional software engineering, establishing a model and data

11https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/ch08.html
12https://arxiv.org/pdf/1906.10742.pdf

88

https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/ch08.html
https://arxiv.org/pdf/1906.10742.pdf

versioning practice is the foundation for reproducibility in machine learning.
Depending on your use case, a change in code or data might trigger a model re-
training.

The common reason for the machine learning model update is the “model decay,”
where the model performance declines with time as new data arrives. All ML
models should be versioned andprotocolled in regulated industries such as health,
finance, or military. At the same time, there might be a need to ensure backward
compatibility by rolling back previously built models. Also, by tracking several
versions of the ML model, it is possible to implement different deployment
strategies such as “canary”- or “shadow”-deployment by analyzing the latest
trained model’s performance improvement. Hence, in this category, we answer
the following questions:

1. Is this optional or mandatory? The model registry might be mandatory if
you have multiple models in production and need to track them all. The
reproducibility requirement might be the reason that you need the model
versioning.

2. Where should new ML models be stored and tracked?
3. What versioning standards are used? (e.g., semantic versioning)

Please note that as an advanced component, theMLmodel registry and versioning
might be reasonable in the later stages of the ML projects.

6.1.8 Model Deployment

After training and evaluation, we transit to the next phase of the CRISP-ML(Q)
and deploy the ML model. Deploying an ML model denotes making it available
on the target environment for receiving prediction requests. Continuous Deploy-
ment (CD) is an automatic deployment ofMLmodels into the target environment
based on predetermined evaluation metrics. In this section of the MLOps Stack
Canvas, we specify all model exposure strategies and infrastructure aspects of CD
by answering the following questions:

1. What is the delivery format for the model?
2. What is the expected time for changes? (Time from commit to production)

89

3. What is the target environment to serve predictions?
4. What is your model release policy? Is A/B testing or multi-armed bandits

testing required? (e.g., for measuring the effectiveness of the new model
on business metrics and deciding what model should be promoted into the
production environment)

5. What is your deployment strategy? (e.g. shadow/canary deployment
required?)

6.1.9 Prediction Serving

This block of the MLOps Stack Canvas deals with the ML model serving as a
process of applying a machine learning model to the new input data. Generally,
we distinguish between online and batch modes of prediction serving. They can
be implemented using five patterns13 to put theMLmodel in production:Model-as-
Service, Model-as-Dependency, Precompute, Model-on-Demand, and Hybrid-Serving.
Each of these patterns would require different infrastructure settings. For exam-
ple, Model-as-Service implements a model serving as a distributed service for
input requests via REST API and implies the on-demand modus for prediction
responses. At the same time, the Precompute pattern means that the prediction
modus is batch and the model predictions are precomputed and stored in a
relational database.

To identify the environment for model serving, we should answer the following
questions in the Prediction Serving block of the MLOps Stack Canvas:

1. What is the serving mode? (batch or online)
2. Is distributed model serving required?
3. Is multi-model prediction serving14 required?
4. Is pre-assertion for input data implemented?
5. What fallback method for an inadequate model output (post-assertion) is

implemented? (Do we have a heuristic benchmark?)
6. Do you need ML inference accelerators (TPUs)?
7. What is the expected target volume of predictions per month or hours?

13https://ml-ops.org/content/three-levels-of-ml-software#code-deployment-pipelines
14https://www.oreilly.com/content/efficient-machine-learning-inference/

90

https://ml-ops.org/content/three-levels-of-ml-software#code-deployment-pipelines
https://www.oreilly.com/content/efficient-machine-learning-inference/

6.1.10 MLModel, Data, and SystemMonitoring

Once the ML Model is deployed, it must be constantly monitored to ensure the
model quality, meaning that the model serving produces correct results. This
block of the MLOps Stack Canvas clarifies the monitoring part of running the
ML System in production and relates to the sixth phase of the CRISP-ML(Q)
process:

1. Is this optional or mandatory? For instance, do you need to assess the effec-
tiveness of your model during prediction serving? Do you need to monitor
your model for performance degradation and trigger an alert if your model
starts performing badly? Is the model retraining based on events such as data
or concept drift?

2. What ML metrics are collected?
3. What domain-specific metrics are collected?
4. How is the model performance decay detected? (Data Monitoring)
5. How is the data skew detected? (Data Monitoring)
6. What operational aspects need to be monitored? (e.g., model prediction la-

tency, CPU/RAM usage)
7. What is the alerting strategy? (thresholds)
8. What triggers the model re-training? (ad hoc, event-based, or scheduled)

6.1.11 Metadata Store

Finally, we should specify an overlapping area such as metadata management.
Metadatamanagement is themanagement of information about each execution of
the experiments, data andmodel pipeline is recorded to provide data and artifacts
lineage, reproducibility, and debug errors.

TheMetadata Store is a cross-cutting component that spans all previous elements
of the MLOps infrastructure stack. Depending on your organization and regula-
tory requirements, you might need to implement an ML model governance pro-
cess. This process will mainly rely on ML metadata. Therefore, the requirement
for ML governance is the ML metadata store component. In the last block of the
MLOps Stack canvas, we answer the following questions:

91

1. What kind of metadata in code, data, and model management need to be
collected? (e.g., the pipeline run ID, trigger, performed steps, start/end times-
tamps, train/test dataset split, hyperparameters, model object, various statis-
tics/profiling, etc.)

2. Are any ML governance processes included in the MLOps lifecycle? What
metadata will be required?

3. What is the documentation strategy: Do we treat documentation as a code?
(examples: Datasheets for Datasets15 and Model Card for Model Reporting16)

4. What operational metrics need to be collected? E.g., time to restore, change
fail percentage.

6.1.12 3 Dilemmas of MLOps

There are also organizational aspects of MLOps, which belong to the general
discussion about building the ML projects’ infrastructure. 1. Tooling: Should
we buy, use existing open-source or build in-house tools for any of the MLOps
components? What are the risks, trade-offs, and impacts of each of the decisions?
1.Platforms: Shouldwe agree on oneMLOps platformor create a hybrid solution?
What are the risks, trade-offs, and impacts of each of the decisions? 1. Skills: How
expensive is it to either acquire or educate our ownmachine learning engineering
talents?

The MLOps Stack Canvas scope is to assist you while identifying the workflows,
architecture, and infrastructure components for the MLOps stack in the ML
project. Answering questions in this canvas should get you a good estimation of
costs that accompany your ML project in every phase.

6.2 Documenting MLOps Architecture
One of the effective ways to document the MLOps architecture is by using Archi-
tecture Decision Records17 (ARD) construct. For example, one ARD can manifest

15https://arxiv.org/abs/1803.09010
16https://arxiv.org/abs/1810.03993
17https://adr.github.io/

92

https://arxiv.org/abs/1803.09010
https://arxiv.org/abs/1810.03993
https://adr.github.io/

each building block from the MLOps Stack Canvas. The simplified ARD format
consists of three essential components:

ARD: A brief description of the architectural decision.

Context: A short description of the problem.

Decision: Here, we describe the actual architectural decision with a detailed expla-
nation.

Consequences: This section provides any implications of the architecture decision.
This section is also a good place to discuss any architectural trade-offs.

The following is a simplified example of such ARD.

ARD: Dataset versioning.

Context: As requested by the regulatory requirements, every retraining of the ML
model should be in sync with the changes in the dataset.

Decision: The ML model should be retrained whenever a new batch of data points
is collected. Therefore, we decided to use DVC to track datasets and ML models.
An alternative solution would be LakeFS.

Consequences: We need to move our data storage to the DVC-supported storage
mechanisms. Additionally, upskilling our team members is required.

6.3 MLOpsMaturity Level
Machine learning is still a new technology for many organizations. Launching
ML-powered software solutions goes through three stages of “AI Readiness”18,
which denotes a company’s maturity in incorporating AI into the business. The
AI maturity can be distinguished between three phases: Tactical, Strategic, and
Transformational (see Figure 3).

The initial phase, known as Tactical, denotes that the organizations explore the
capabilities ofML/AI technologies. The reasonableway is to startwith non-critical
use cases and short-termprojects.While building a proof of concepts, we create an

18https://services.google.com/fh/files/misc/ai_adoption_framework_whitepaper.pdf

93

https://services.google.com/fh/files/misc/ai_adoption_framework_whitepaper.pdf

Figure 6.3: AI Readiness Phases (source: ml-ops.org)

opinion about the applicability of machine learning. This phase’s focus is clearly
on learning and understanding what value ML might generate. Furthermore, all
processes are mainly manual because there is little to no MLOps infrastructure
and ML skills are being developed.

The next phase, called Strategic, implies that business goals coordinate the
amount of ML use cases and parts of the processes are automated. Typically,
there are basic ML skills in the team and basic infrastructure to get ML models
into production. The main distinction to the previous phase is utilizing pipelines
for data preparation and model training. Additionally, the ML system provides
end points, such as REST API, to expose ML models to the target application.
Basic ML monitoring and alerting functionality are in place as well.

In the Transformational phase, organizations use ML to stimulate innovation.
In this phase, ML is productionized as a fully automated process, which im-

94

plies a sophisticated data platform, widely adopted common patterns for ML
development, and CI/CT/CD practices . Usually, the ML expertise is a part of
a cross-functional team to maintain the productionized model. Furthermore,
organizations utilize advanced MLOps components, such as feature store, ML
model and data versioning, and model monitoring and alerting to trigger model
re-training.

In general, the amount of MLOps practices and infrastructure components
will depend on the organization’s ML-maturity described in the “AI Readi-
ness” framework. The suggested MLOps Stack Canvas might be aligned with
the “AI Readiness” maturity level of an organization. It is reasonable to apply
the MLOps Canvas starting from the second phase, “Strategic,” where the AI use
cases are aligned to the business core domain and teams start utilizing pipelines,
experiment workflows and dedicated APIs for exposing the ML model.

6.4 Conclusion
Getting ML models in production involves many interplaying components. With
the currently exploding number of MLOps platforms and frameworks, it is chal-
lenging to keep up with the industry’s development pace and create the right tech-
nical environment for ML projects. To specify an architecture and infrastructure
stack for Machine Learning Operations, we reviewed the CRISP-ML(Q) develop-
ment lifecycle and suggested an application- and industry-neutral MLOps Stack
Canvas. This Canvas helps identify theworkflows, architecture, and infrastructure
components for the MLOps stack in the ML project. Answering questions in the
canvas should get a reasonable estimation of required components and its costs
in the ML project.

6.5 Acknowledgements
We would like to thank Alexey Grigoriev19 and Louis Dorard20 for the insightful
discussions and their valuable feedback for this chapter.

19https://www.linkedin.com/in/agrigorev/
20https://www.linkedin.com/in/louisdorard/

95

https://www.linkedin.com/in/agrigorev/
https://www.linkedin.com/in/louisdorard/

7 MLOps andModel Governance
MLOps and Model Governance are often perceived as separate processes.
However, they are tightly interwoven. This chapter introduces the integration of
these frameworks and explains essential principles and technical components of
MLOps and ML model governance.

Recently, Machine Learning Operations (MLOPs)1 has received a lot of attention
as it promises to bring machine learning (ML) models into production quickly,
effectively, and for the long term.MLOps is equivalent toDevOps in software engi-
neering: it is an extension of DevOps for the design, development, and sustainable
deployment of ML models in software systems. Model Governance encompasses
a set of processes and frameworks that help in the deployment of ML. Setting
up automatized and reproducible data and ML pipelines reduces the amount of
time required to bring models into production (time-to-market). There are six
interactive phases in the ML development process:

• Business and Data Understanding
• Data Engineering
• Model Engineering
• Quality Assurance for ML Systems
• Deployment
• Monitoring and Maintenance

This figure shows the most important phases of the ML life cycle according to
CRISP-ML(Q)2:

However, the operationalization of ML models is not the only challenge many
companies are facing today. The use of MLobliges companies responsibility and
compliance with legal requirements. To fulfill these obligations, a company re-
quires processes through which it is able to:

• control access to ML models
• put guidelines and legal requirements into practice

1https://www.innoq.com/de/articles/2020/10/mlops-operations-fuer-machine-learning/
2https://arxiv.org/pdf/2003.05155.pdf

97

https://www.innoq.com/de/articles/2020/10/mlops-operations-fuer-machine-learning/
https://arxiv.org/pdf/2003.05155.pdf

Figure 7.1: CRISP-ML(Q) process model (source: ml-ops.org)

• track interactions with the ML models and their results
• document the foundation of an ML model (stakeholders, business context,

training data, feature selection, guidelines for model reproduction, choice of
parameters, results of model evaluation and validation) Collectively, these
processes are referred to asModel Governance3.

7.1 Model Governance - A NewChallenge
Organizations often don’t recognize the importance of Model Governance until
models are supposed to be deployed. Many companies have automatized ML
pipelines but fail to bring models into compliance with legal requirements. Ac-
cording to anAlgorithmia-Study4 from2021, 56 percent of respondents considered
the implementation of model governance to be one of the biggest challenges
for successfully bringing ML applications into production. In Germany, this IDG

3https://www.datarobot.com/blog/what-is-model-governance/
4https://www.artificialintelligence-news.com

98

https://www.datarobot.com/blog/what-is-model-governance/
https://www.artificialintelligence-news.com

Research Services ML 2021 study5 found that 26.2 percent of companies believe that
compliance risks pose the biggest challenge, while 35.8 percent consider legal
considerations (such as transparency of algorithmic decision-making) to be a
remaining difficulty.

7.2 Model GovernanceWill Not Be
Optional

Companies already have to comply with several legal regulations6. In addition,
these requirements are expected to be expanded by AI-specific regulations: the
EU published a regulation draft in April 2021 and entered into force in August
20247 as the first legal framework for AI. The EU AI Act takes an approach that
classifies different types of AI systems according to four distinct risk categories8.
The risk category determines the scope of the regulations: the higher the deter-
mined risk, the more requirements have to be met:

7.2.1 Category 1 (“Unacceptable Risk”)

AI software considered to be a significant risk for security, livelihoods, and human
rights is forbidden (e.g., social scoring systems).

7.2.2 Category 2 (“High Risk”)

AI software in the “high” risk category is subject to strict requirements. These
include the following aspects9: Robustness, security, accuracy (precision), doc-

5https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2
021

6https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2
021?gclid=Cj0KCQjw18WKBhCUARIsAFiW7JyBopj392wCTvucZ2vWlUqEFXl5pVuj1eVrgMs7
YT3i5foYy-iMYuIaAgO5EALw_wcB#download

7https://artificialintelligenceact.eu/ai-act-explorer/
8https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust

-artificial-intelligence_de
9https://germany.representation.ec.europa.eu/news/fur-vertrauenswurdige-kunstliche-intellige
nz-eu-kommission-legt-weltweit-ersten-rechtsrahmen-vor-2021-04-21_de

99

https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2021
https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2021
https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2021?gclid=Cj0KCQjw18WKBhCUARIsAFiW7JyBopj392wCTvucZ2vWlUqEFXl5pVuj1eVrgMs7YT3i5foYy-iMYuIaAgO5EALw_wcB#download
https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2021?gclid=Cj0KCQjw18WKBhCUARIsAFiW7JyBopj392wCTvucZ2vWlUqEFXl5pVuj1eVrgMs7YT3i5foYy-iMYuIaAgO5EALw_wcB#download
https://www.lufthansa-industry-solutions.com/de-de/studien/idg-studie-machine-learning-2021?gclid=Cj0KCQjw18WKBhCUARIsAFiW7JyBopj392wCTvucZ2vWlUqEFXl5pVuj1eVrgMs7YT3i5foYy-iMYuIaAgO5EALw_wcB#download
https://artificialintelligenceact.eu/ai-act-explorer/
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence_de
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence_de
https://germany.representation.ec.europa.eu/news/fur-vertrauenswurdige-kunstliche-intelligenz-eu-kommission-legt-weltweit-ersten-rechtsrahmen-vor-2021-04-21_de
https://germany.representation.ec.europa.eu/news/fur-vertrauenswurdige-kunstliche-intelligenz-eu-kommission-legt-weltweit-ersten-rechtsrahmen-vor-2021-04-21_de

Figure 7.2: Different risk categories according to EU draft on AI regulation (source: ml-ops.org)

100

umentation and logging as well as appropriate risk assessment and mitigation.
Further requirements10 include high-quality training data, non-discrimination,
traceability, transparency, human monitoring, and the need for conformity test-
ing and proof of compliance through CEmarking. Examples ofML systems in this
category include private and public services (credit scoring) or systems used in
education or vocational training to decide on a person’s access to education and
career path (e.g., exam scoring).

7.2.3 Category 3 (“Limited Risk”)

This AI software is subject to a transparency obligation. For example, chatbot
users must be informed that they are interacting with AI software.

7.2.4 Category 4 (“Minimal Risk”)

AI software in this category is not subject to any regulation (e.g., spam filters).

As the regulation is supposed to apply not only to EU-based companies but
also to any company offering AI services within the EU, the law would have a
similar scope of application as the GDPR11. The regulation must be approved by
the EU Parliament and pass through the legislative procedures of the individual
member states12. If the law enters into force in 2024, high-risk systems will
have to undergo conformity assessment13 before deployment. After passing the
conformity assessment, the AI system can be registered in an EU database and
receive a declaration of conformity, which is required to obtain the necessary CE
marking.

However, the EU draft still has room for improvement14. The definition of an
AI system is probably the biggest challenge in this context. This definition is

10https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
11https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
12https://www.taylorwessing.com/de/insights-and-events/insights/2021/04/eine-neue-europaeis

che-regulierung-fuer-kuenstliche-intelligenz
13https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust

-artificial-intelligence_en
14https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/

101

https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
https://www.taylorwessing.com/de/insights-and-events/insights/2021/04/eine-neue-europaeische-regulierung-fuer-kuenstliche-intelligenz
https://www.taylorwessing.com/de/insights-and-events/insights/2021/04/eine-neue-europaeische-regulierung-fuer-kuenstliche-intelligenz
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence_en
https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/

blurry andmight lead to different interpretations. Companies could be struggling
to align their technical work with definitions in the regulation as the general
character of the draft makes it unclear how the definitions, evaluation criteria and
requirements will have to be put into practice. It is also important to note that EU
regulations are not the only decisive argument for embracing model governance.
Model governance is also relevant for low-risk ML not operating in a regulated
domain, but which are related to high business risks. For example, if a company
sells spam filters that regularly legitimate emails, its market position might be at
risk due to this malfunction. As a result, model governance is not only needed to
meet legal requirements, but also to ensure the quality of ML systems.

7.3 The Integration of Model Governance
andMLOps

The integration of MLOps and model governance depends on two aspects:

Strength of the regulations – determined by the business domain, the risk
category of an ML model, and the business risk

There are industries with a long tradition of strict regulations, such as the health
or finance sectors. Upcoming EU regulations might add new requirements to
these domains, but they could also apply to non-regulated domains if the system
is considered to be of high risk. Finally, the influence of AI systems on business
success is crucial: if commercial success is heavily dependent on AI systems,
management requirements should be correspondingly strict.

Number ofMLmodels that need tobe integrated into the software systems

The number of ML models shows two aspects. First, it reveals how strongly a
company integrates ML into its main business domain and/or how organization-
ally and technically mature the company is for implementing the planned ML
projects. Thus, a low number of ML models can either mean that ML does not
play an important role in a company’s business concept or that companies are
not yet sufficiently equipped to implement ML.

102

Fig. 3 shows the integration of model governance and MLOps along the degree of
regulation and the number of models as Venn diagrams:

Figure 7.3: The integration of MLOps and Model Governance, displayed as Venn diagrams. The higher the
degree of regulation, the closer the integration. The more models we have, the bigger the

importance of MlOps becomes (source: ml-ops.org)

7.3.1 Variant 1: ManyModels and Strict Regulation

This scenario, where we see many models operating in a highly regulated applica-
tion domain, is themost complex case. Model governance andMLOps are equally
important here and should be closely related to each other – model governance
should be integrated into every step of the MLOps life cycle (development, de-
ployment, and operations).

103

Examples: Which Domains Are Subject to Strict Regulation?

Models used in the healthcare and financial sectors are examples of models oper-
ating in strictly regulated domains. However, EU law might also apply to models
of the high-risk category, even though they are not being applied in traditionally
regulated fields. For example, high-risk systems could be ML systems that sup-
port process automation in critical infrastructure, but also models that automate
human decision-making in order to determine access to vocational and school
education.

Framework for Model Governance

It is important to integrate model governance processes into every step of the
ML life cycle from the very beginning. The following Model Governance frame-
work15 guides through the whole life cycle and covers both legal and corporate
requirements.

This list describes the main components of the framework for model governance
which should be integrated into every stage of the ML life cycle:

ML Lifecycle, Model Governance Components und Tasks und
Artifacts

7.3.2 1. Development (building the training pipeline)

• Reproducibility, Validation:

• Model Metadata Management
• Model Documentation
• Model and Data Registry
• Model Evaluation and Validation

15https://www.oreilly.com/library/view/the-framework-for/9781098100483/ch01.html

104

https://www.oreilly.com/library/view/the-framework-for/9781098100483/ch01.html

7.3.3 2. Deployment & Operations

• Observation, Visibility, Control:

• Logging (Serving Logs)
• Continuous Monitoring and Evaluation
• ML Infrastructure Cost Transparency
• Versioning of Models and Data Sets
• Tracking ML-Metadata in ML Metadata and Artifact Registry

• Monitoring and Alerting:

• Continuous Monitoring and Evaluation
• Automated Alert Function (in response to performance loss or distribution

shifts)

• Model Service Catalog:

• Providing requested information on models for internal reusability

• Security:

• Compliance with IT standards
• Authentication, SSO, and RBAC
• Management of Model Endpoints and API
• Management of Keys and Secrets
• System Testing

• Conformity and Auditability:

• Collecting relevant information from Model Logging (ML metadata)
• Documentation
• Audit Results
• Conformity Testing
• Certificate of Conformity (CE Mark)

7.4 Reproducibility and Validation
In the first phase of the ML lifecycle, reproducibility must be established and
the model should be validated.

105

Reproducibility is the ability to obtain the same result twice. Similar to scien-
tists precisely specifying experimental procedures, ML reproducibility must pro-
vide relevant metadata and information to reproduce models.Model metadata
management includes the type of algorithm, features and transformations, data
snapshots, hyperparameters, performance metrics, verifiable code from source
code management, and the training environment.

Documentation is a commonly required part in regulated domains. However, the
project itself also benefits from good documentationwithin the company as trans-
parency and traceability minimize the risks of technical debt16. Documentation
includes the following aspects: an explanation of the business context, a high-
level explanation of the algorithm, model parameters, selection and definition of
features, instructions for reproducing the model, and examples for training the
algorithms as well as examples for making predictions by the algorithm. Docu-
mentation can be supported by useful toolkits such as Data Sheets17 and Model
Cards18. Data Sheets record which kind of mechanisms or procedures were used
for data collection or whether ethical review procedures took place. Model Cards
complement Data Sheets and provide information about the development of a
model, the assumptions that have been made, and expectations about model
behavior across different cultural, demographic, or phenotypic groups.

The validation ofMLmodels is amulti-stage process with differentmetrics, such
as performance indicators like accuracy or F1 score, or business metrics like KPIs
to check for statistically significant improvement compared to a control group in
A/B testing. KPIs can also be used to testwhether theMLproblem itself is properly
formulated. In addition, the development team should check whether the model
can be reproduced. Another important component of validation is explainability:
are developers able to explain how individual features affect a prediction? Often,
explanations for models can only be approximated.

After model deployment, model governance processes should be integrated into
the deployment and operations phases of the ML lifecycle:

16https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86
b7addfea4c419b9100c6cdd26cacea.pdf

17https://arxiv.org/pdf/1803.09010.pdf
18https://arxiv.org/pdf/1810.03993.pdf

106

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://arxiv.org/pdf/1803.09010.pdf
https://arxiv.org/pdf/1810.03993.pdf

7.5 Observation, Security, Control
This component enables companies to provide transparency about the model
which includes logging, metrics and auditing: model logging values are pro-
cessed into metrics and visualized in dashboards for analysis and communication
purposes. Cost transparency provides visibility into costs and facilitates billing
of various teams for a specific model and resource usage.Model Usage Reports
provide visibility into the success and adoption of individual models and can
support access control. The last component includes versioning of model and data,
to ensure that all models can be restored without data loss or modification and
that model prediction can be traced back to the model version that has produced
them.

7.6 Monitoring and Alerting
Key metrics should be continuously monitored to detect deviations early. If devi-
ations, such as distribution shifts or performance loss are detected, alerts should
be sent to inform stakeholders immediately (if MLOps-pipelines are fully auto-
mated, deviations will automatically trigger the CI/CD training pipeline). The
monitoring engine requires appropriate platform and infrastructure integration
with dashboard and monitoring tools, continuous monitoring of uptime SLA as a
metric for application stability and availability, and alerting functionalities when
problems occur.

7.7 Model Service Catalog
The Model Service Catalog is an internal marketplace of all ML models in the en-
terprise. The catalog should have a goodUX, it should be connected to the location
of model storage, and it should display relevant metadata for a model such as its
latest version, inputs, and outputs. Employees with appropriate permissions can
access the catalog, search for models, and retrieve requested information about
the models.

107

7.8 Security
ML security19 is an important aspect of the model governance agenda. This
study20 by Gartner estimates that by 2022 thirty percent of cyber security
attacks will have an ML-specific character. To be protected against these attacks,
measures must be taken to meet required security standards. For example,
making models accessible through HTTP comes with the concurrent risk of
misuse. Therefore, adherence to IT standards (DNS, proxies, and load balancing
for data traffic) is very important. However, the complexity of these standards
may require the services of third-party providers.

ML security management needs to secure and manage endpoints to make sure
that only authorized users can create, change, or delete endpoints. Authentication,
SSO, and role-based access control (RBAC) are further important aspects of ML
security. ML models must be integrated into token-based authentication solu-
tions tomake sure that only eligible users are able to query themodel. In addition,
key and secret management should provide solutions for creating, saving, and
managing keys. Finally, models are supposed to pass security audits. Therefore,
it is very recommendable to involve IT and company experts from the beginning
of a project to fully consider all security requirements.

Protection against ML-specific cybersecurity attacks is also very important. With
models often being trained on sensitive data, data and information security play
an important role. Using this Adversarial ML Threat Matrix21 might be helpful:
it is comparable to the classic Attack Chain Modeling and builds on the well-
establishedMITRE Att&CK22, a globally accessible knowledge base of attacks and
techniques. MITRE Att&CK is used as a guideline for the development of specific
threat models and methods in the private sector, in governments, and in the field
of cyber security products and services. The Adversarial ML Threat Matrix is a
similar concept for ML security – it contains a collection of known weaknesses
and the associated attacks.

19https://www.innoq.com/de/articles/2021/08/machine-learning-security-teil-2/
20https://www.gartner.com/en/documents/3939991
21https://github.com/mitre/advMLthreatmatrix
22https://attack.mitre.org/

108

https://www.innoq.com/de/articles/2021/08/machine-learning-security-teil-2/
https://www.gartner.com/en/documents/3939991
https://github.com/mitre/advMLthreatmatrix
https://attack.mitre.org/

7.9 Conformity and Auditability
Models of the high-risk category are supposed to undergo conformity testing in
order to be eligible to receive the CEmarking23, which is a prerequisite to placing
models on the Europeanmarket. In order to fulfill the compliance and auditability
requirements of a heavily regulated domain, the model governance framework
should be as automated, transparent, and complete as possible. Model logging,
metrics, and audits are very important in order to prove compliancewith require-
ments. This includes collected and visually preparedmodel information, for exam-
ple displayingmetrics in dashboards, model and data versioning, and audit results
(tested components of the validation in the development phase). Compliance
with security requirements is another prerequisite for passing conformity testing:
permissions, authorized access toML applications and authentications have to be
put into place. Each domain is subject to different regulations, and there is no one-
size-fits-it-all solution. Compliance is very complex and often requires years of
expertise. This makes it even more important to involve compliance and security
experts in the model governance strategy from the very beginning to make sure
that important considerations are not being overlooked.

7.9.1 Variant 2: ManyModels and Little Regulation

This variant applies if the application domain is not highly regulated, the ML
model is not in a high-risk category, and the associated business risk is low. In
this case, companies need MLOps and model governance to manage and opera-
tionalize models. With legal requirements being weaker and the focus on MLOps
being stronger than in the first variant, model governance forms part of MLOps
and is not a stand-alone framework, unlike in the variant presented previously. To
understand howmodel governance can be integrated intoMLOps, an overview of
MLOps is helpful. This Google paper “Practitioners guide to MLOps: A framework
for continuous delivery and automation of machine learning24 divides MLOps into
six integrated and iterative processes: ML Development, Training Operationaliza-
tion, Continuous Training, Model Deployment, Prediction Serving, Continuous
Monitoring, andData andModelManagement.We rely on thisMLOps framework

23https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
24https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

109

https://planit.legal/das-ki-gesetz-der-eu-entwurf-und-diskussionsstand/
https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

to demonstrate the integration of model governance and MLOps for the second
variant (many models and low regulation).

Ideally, the result of the ML development should not be the model, but the
formalization of the training pipeline (which encompasses the data- and model-
engineering pipeline). When the monitoring machine detects dropping perfor-
mance or distribution shifts, a trigger kicks off the (continuous) training pipeline:
the model is re-trained with new data and then re-deployed. The training pipeline
consists of a data engineering component (data entry, data validation, data trans-
formation) and a model component (model training, model evaluation, model
validation) and should be versioned and tested as well. As a first step in the
training, new training data are loaded from the data repository. Data and feature
repositories standardize the definition and saving of the data, ensure data con-
sistency for training and inference, and support data preprocessing and feature
engineering processes. The data pass through all steps of the data engineering
process and are then used to retrain the model. After model training, the model
is evaluated, validated, and saved as a new model candidate in the model registry.
All metadata and artifacts that are being produced during the training run are
saved in the ML metadata and artifact repository. ML artifacts include statistics
and data schemas, trainedmodels, andmetrics. MLmetadata are the information
about these artifacts (pipeline run ID, trigger, process type, start and end time,
status, environmental configurations, and input parameter values).

Model registriesmanage the life cycle ofMLmodels. After being registered,model
governance processes check whether the model candidate is ready to be deployed
into the productive system (model deployment). After successful deployment,
the model provides predictions for every input (prediction serving). Model gov-
ernance permanently monitors the performance of the productive system (con-
tinuous monitoring) and collates all relevant metrics in an independent report
(e.g. accuracy). As a result of the monitoring, performance drops or changing
input data are immediately diagnosed, an alert is being sent, and/or the CI/CD
training pipeline is triggered to produce a new model candidate.

Figure 4 gives an overview shows how data and model management are imple-
mented as cross-cutting processes in the MLOps life cycle:

110

Figure 7.4: Data and model management are cross-purpose processes in the MLOps life cycle (source:
ml-ops.org)

7.10 Model Governance as Part of Model
Management

Model governance encompasses the recording, auditing, validation, approval,
and monitoring of models. In this variant, model governance is the final su-
pervisory authority to approve a model for being deployed into the production
environment. The list below summarizes themodel governance components with
the necessary tasks and artifacts. For the implementation of these tasks, model
governance uses information from the ML metadata, the artifact repository, and
the model registry.

• Storage/Versioning of models
• Evaluation and Explainability
• Testing

111

• Release
• Report (summary, visualization, highlighting of metrics) for quality assurance

of the productive model

Themodel registry saves allmodel versions to ensure reproducibility and account-
ability (similar to the model versioning in the “observation and control of model
governance” component).

The evaluation of amodel is very important aswell. To evaluate amodel candidate,
it can be released using shadow deployment. Then, its performance can be com-
pared to the current productive model by comparing performance and business
metrics (similar to the validation of the development phase).

Model audits are another fundamental aspect. Any model changes must be
checked and approved to control risks in different categories (for example
business, financial, legal, security, data protection, reputational, and ethical
risks) as described in this end-to-end framework for the internal auditing of
algorithms. The auditing component in this model governance framework
can be considered to be a less strict variant of the certificate of conformity.
Finally, a report contains the summary, visualization, and highlighting of model
performance metrics collected during the monitoring process.

7.10.1 Variant 3: FewModels and Little Regulation

This variant applies to companies that useMLmodels in non-regulated industries
which do not belong to the high-risk category according to the EU draft andwhere
the business risk is quite low. The low number ofMLmodels can either mean that
MLdoes not play an important role in the business strategy of the company or that
the company is still in the early stage of AI maturity.

With a limited scope of regulations and a low number of models, companies do
not have to consider too many aspects. The lack of requirements and the low
number of models allows model governance to be optional, although it is still rec-
ommended to use it for quality assurance. The components of the development
phase are also relevant for this scenario.

112

7.10.2 Variant 4: FewModels and Strict Regulation

This scenario applies to companies operating in strictly regulated industries that
are only using a small number ofmodels. The only difference to variant 1 is the low
number ofmodels, whichmakesMLOps less important for this use case. However,
the close integration of model governance frameworks with MLOps remains the
same: in heavily regulated domains, model governance must cover the complete
MLOps life cycle, even if only a few models are in use (see variant 1).

7.11 Summary – The Main Components of
Model Governance

Although the strength of regulation and the number of models determine how
model governance should be implemented, all variants have the following aspects
in common:

• Comprehensive model documentation or reports. This includes the report of
metrics by using appropriate visualization techniques and dashboards

• Versioning of all models to create transparency for stakeholders (explainability
and reproducibility)

• Auditing of ML systems (automated approval auditing or CE certification as
part of conformity testing)

• Comprehensive data documentation to guarantee high data quality and adher-
ence to data protection

• Management of ML metadata
• Validation of ML models
• Continuous monitoring and logging of model metrics

7.12 Conclusion
The compliance ofML systemswith legal requirements is by nomeans an abstract
problem but one that can be solved technically because MLOps already provides

113

the appropriate infrastructure on which we can build to implement model gov-
ernance processes. Moreover, it should be clear that we need MLOps and Model
Governance to deploy ML models successfully.

114

8 What we offer

8.1 Consulting, Development, and
Operations

The widespread hype around Machine Learning and Artificial Intelligence can
create the impression that developing software with MLmodels is easy. However,
various studies show that nearly 80% ofML projects fail. We are happy to support
you in your machine learning development initiative—whether in the early explo-
ration phase, during product development, or with all operational aspects.

AI Products with Domain-driven Design
Are you up to the challenge of developing innovative data-driven software solu-
tions? Do you wonder where AI can be used in product development? Nowadays,
there are countlessmodels available through APIs and open-source solutions that
can be used without having to train your own model. It’s all there. Commodity
AI is possible. How do you get started? Where in your product makes sense
to integrate AI? What features are now possible that weren’t achievable or too
expensive before?

If this speaks to you, then this training is for you! Let our experienced trainers
introduce you to the practical application of Artificial Intelligence and Machine
Learning. Learn how to identify and validate AI/MLuse cases, and gain an in-depth
understanding of the right tools and strategies for successful implementation
and deployment. Throughout the workshop, we use the Domain-driven Design
methodology, which requires no prior knowledge.

More information: https://www.socreatory.com/en/trainings/ddd4ml

115

We advise honestly, think innovatively, and are passionate about development —
the result: successful software solutions, infrastructures, and business models.

As a technology company, we focus on strategy and technology consulting, soft-
ware architecture and development, methodology and technology training, and
platform infrastructures.

With over 170 employees at locations in Germany and Switzerland, we support
companies and organizations in designing and implementing complex projects
and improving existing software systems.

We are involved in open-source projects and the iSAQB e.V., and pass on our
knowledge and experience at conferences and meetings as well as in numerous
books and professional articles.

116

About the authors

Alexander Kniesz
Alexander started in 2017 as a working student.
Since 2021 he now works as a consultant at INNOQ.
Since his master’s degree in data science, his focus
is on topics like data processing, machine learning,
and AI. With those specializations, he is also
interested in other software development topics to
help bringingML into production. Therefore he also
assists in topics like Machine Learning Operations.

Anja Kammer
Anja Kammer is a Senior Consultant at INNOQ and
supports companies on their journey to the cloud.
In addition to providing advice on development
processes and platforms, she develops cloud-native
web applications in cross-functional teams. She is
also an accredited trainer and co-curator for the
iSAQB Advanced Level module CLOUDINFRA.

Dr. Larysa Visengeriyeva
Larysa Visengeriyeva is Head of Data and AI at
INNOQ. She received her doctorate in Augmented
Data Quality Management at the TU Berlin. She is
working on the operationalization ofMachine Learn-
ing (MLOps), data architectures such as Data Mesh
and Domain-Driven Design.
_@visenger

117

118

	1 Why you Might Want to use Machine Learning
	1.1 Deployment Gap
	1.2 Scenarios of Change That Need to be Managed
	1.3 MLOps Definition
	1.4 The Evolution of the MLOps

	2 ``What is the business problem that we are trying to solve here?''
	2.1 Work Flow Decomposition
	2.2 AI Canvas
	2.3 Machine Learning Canvas

	3 Three Levels of ML Software
	3.1 Data: Data Engineering Pipelines
	3.2 Model: Machine Learning Pipelines
	3.3 Code: Deployment Pipelines

	4 MLOps Principles
	4.1 Iterative-Incremental Process in MLOps
	4.2 Automation
	4.3 Continuous X
	4.4 Versioning
	4.5 Experiments Tracking
	4.6 Testing
	4.7 Monitoring
	4.8 ``ML Test Score'' System
	4.9 Reproducibility
	4.10 Loosely Coupled Architecture (Modularity)
	4.11 ML-based Software Delivery Metrics (4 metrics from ``Accelerate'')
	4.12 Summary of MLOps Principles and Best Practices

	5 CRISP-ML(Q). The ML Lifecycle Process.
	5.1 Business and Data Understanding
	5.2 Data Engineering (Data Preparation)
	5.3 Machine Learning Model Engineering
	5.4 Evaluating Machine Learning Models
	5.5 Deployment
	5.6 Monitoring and Maintenance
	5.7 Conclusion
	5.8 Acknowledgements

	6 MLOps Stack Canvas
	6.1 Blocks of the MLOps Stack Canvas
	6.2 Documenting MLOps Architecture
	6.3 MLOps Maturity Level
	6.4 Conclusion
	6.5 Acknowledgements

	7 MLOps and Model Governance
	7.1 Model Governance - A New Challenge
	7.2 Model Governance Will Not Be Optional
	7.3 The Integration of Model Governance and MLOps
	7.4 Reproducibility and Validation
	7.5 Observation, Security, Control
	7.6 Monitoring and Alerting
	7.7 Model Service Catalog
	7.8 Security
	7.9 Conformity and Auditability
	7.10 Model Governance as Part of Model Management
	7.11 Summary – The Main Components of Model Governance
	7.12 Conclusion

	8 What we offer
	8.1 Consulting, Development, and Operations
	AI Products with Domain-driven Design

	About the authors

