
dagger.io
Te c h n o l o g y  D a y  2 0 2 2

(Not only) local CI/CD pipelines 
without the YAML hell 

FABIAN KRETZER
INNOQ.SOCIAL/@FABIAN



© dagger.io

Our journey
•Why?

• Origins

• Building blocks

• Concepts

• Example

• Future

• Opinion(s)


© cuelang.org

http://dagger.io
http://cuelang.org


But why?!





Code



Build system

Code



Build system

CI/CD

Code



Build system

CI/CD

Code

Instant feedback 
loop



Build system

CI/CD

Code

Instant feedback 
loop

Isolation & 
Collaboration & 

Delivery



Build system

CI/CD

Code

SLOW!

Instant feedback 
loop

Isolation & 
Collaboration & 

Delivery



Build system

CI/CD

Code

SLOW!

Instant feedback 
loop

Isolation & 
Collaboration & 

Delivery

Knows 
nothing™ 
about the 

code  



Build system

CI/CD

Code

SLOW!

Instant feedback 
loop

Isolation & 
Collaboration & 

Delivery

Knows 
nothing™ 
about the 

code  

There is a gap



„Everything can be solved by an additional layer of 
indirection“ 


- Unknown wise person



Build system

CI/CD

Code

SLOW!

Instant feedback 
loop 

Isolation & 
Collaboration & 

Delivery

Knows 
nothing™ 
about the 

code  

There is a gap



Build system

CI/CD

Code

There is a gap



Build system

CI/CD

Code



Build system

CI/CD

Code

Additional problem 
solving layer



Build system

CI/CD

Code

Additional problem 
solving layer

Instant feedback 
& Isolation & 

Delivery



Imperative vs. declarative
•Gradle vs. Maven vs. Jenkinsfile vs. .gitlab-ci.yml


• Its not a binary decision, but a continuum


• Reduce mental load -> Shift complexity to 
different layers


• Don’t hide complexity, but establish clear 
boundaries



Why – Summary
• Save interface between Build and CI


• Local development with…


• … Instant feedback loop



We don’t want to replace either build or CI/CD 
systems, but bridge nicely between them while solving 

some problems of both systems along the way.



From the people that brought you docker
The origin story



Containers
It’ about the 
developer 
experience

"Engine lead“ Docker project



LLBBuildKit
Low-Level 
Build definition 
format

„At the core of BuildKit is a Low-Level Build 
definition format. <…> 


<LLB> defines a content-addressable 
dependency graph that can be used to put 
together very complex build definitions. 


It also supports features not exposed in 
Dockerfiles, like direct data mounting and 
nested invocation. <…> 


Everything about execution and caching of 
your builds is defined in LLB“




cuelang.org
The data 
validation & 
configuration 
language



cuelang.org
The data 
validation & 
configuration 
language

- Built upon ~15 years of experience with 
Google GCL



cuelang.org
The data 
validation & 
configuration 
language

- Built upon ~15 years of experience with 
Google GCL

- Combine constraints from different 
sources to produce a deterministic output



cuelang.org
The data 
validation & 
configuration 
language

- Built upon ~15 years of experience with 
Google GCL

- Combine constraints from different 
sources to produce a deterministic output

- Bonus: Comparing schemas for 
backwards compatibility



cuelang.org
The data 
validation & 
configuration 
language

- Built upon ~15 years of experience with 
Google GCL

- Combine constraints from different 
sources to produce a deterministic output

- Bonus: Comparing schemas for 
backwards compatibility

- Limited scripting: explicitly constrained -> 
converges to a valid state in finite time



cuelang.org
The data 
validation & 
configuration 
language

- Built upon ~15 years of experience with 
Google GCL

- Combine constraints from different 
sources to produce a deterministic output

- Bonus: Comparing schemas for 
backwards compatibility

- Limited scripting: explicitly constrained -> 
converges to a valid state in finite time

https://cuelang.org/docs/about/#history



Origins – Summary



Origins – Summary
• People with right™ mindset



Origins – Summary
• People with right™ mindset

• Mature foundational technologies



Origins – Summary
• People with right™ mindset

• Mature foundational technologies

• Cuelang as a configuration language



Origins – Summary
• People with right™ mindset

• Mature foundational technologies

• Cuelang as a configuration language

• Everything gets better if you throw container 
technology at it and introduce a new – 
perfectly fitting – „programming“ language😉



Success of a technology is determined by its 
accessibility



The building blocks



dagger.io

Concepts

cuelang.org

http://dagger.io
http://cuelang.org


dagger.io

Concepts
• Basic cuelang concepts

cuelang.org

http://dagger.io
http://cuelang.org


dagger.io

Concepts
• Basic cuelang concepts

• dagger.io primitives, structure and lifecycle

cuelang.org

http://dagger.io
http://cuelang.org


dagger.io

Concepts
• Basic cuelang concepts

• dagger.io primitives, structure and lifecycle

• How they interact (with docker)

cuelang.org

http://dagger.io
http://cuelang.org


Schema is data is …cuelang
Important 
concepts for 
dagger.io



Schema is data is …cuelang
Important 
concepts for 
dagger.io

• Nodes (with fields) & constraints {a: int}


• Operators and Expressions (>=)


• Definitions (#)


• Unifications and Disjunctions (& |)


• Conditionals (if a > 5)


• Loops


• Templates


Go and play (later😉): https://cuelang.org/play/

https://cuelang.org/play/


Schema is data is …cuelang
Important 
concepts for 
dagger.io



Schema is data is …cuelang
Important 
concepts for 
dagger.io

innoqEvent: {

    name: string

    attendees: > 500 | *2000

    fun: "A lot!!!"

} & {

    name: "Technology Day"

    attendees: 600

}



Schema is data is …cuelang
Important 
concepts for 
dagger.io

innoqEvent: {

    name: string

    attendees: > 500 | *2000

    fun: "A lot!!!"

} & {

    name: "Technology Day"

    attendees: 600

}

{

    "innoqEvent": {

        "name": "Technology Day",

        "attendees": 600,

        "fun": "A lot!!!"

    }




Using a directed acyclic graph to our 
advantage



Putting a plan into actions



Depends on



Depends on

Plan



Action

Depends on

Plan



Action

Action

Depends on

Plan



Action

Action

Depends on

Plan



Action

Action

Action

Depends on

Plan



Action

Action

Action

Depends on

Plan

Action

Action



Action

Action

Action

Depends on

Plan

Action

Action

Host



Action

Action

Action

Depends on

Plan

Action

Action

ClientHost



Action

Action

Action

Depends on

Plan

Action

Action

ClientHost

Input data 
Files / Env



Concepts – Summary



Concepts – Summary
• Cuelang: schema == data and order doesn’t matter



Concepts – Summary
• Cuelang: schema == data and order doesn’t matter

• dagger.io: Plan with composite and nested actions



Concepts – Summary
• Cuelang: schema == data and order doesn’t matter

• dagger.io: Plan with composite and nested actions

• Docker engine: caching „for free“



Concepts – Summary
• Cuelang: schema == data and order doesn’t matter

• dagger.io: Plan with composite and nested actions

• Docker engine: caching „for free“



dagger.io

Example - Lets blog!
• Build static site with goHugo


• Optimize images before deployment


• Deploy website via rsync 

cuelang.org

http://dagger.io
http://cuelang.org


dagger.io

Future
• cuelang not mandatory


• SDKs


• Golang


• Python


• node.js


cuelang.org

http://dagger.io
http://cuelang.org


Opinions
•Good mixture of people, mindset, concepts and 

foundational technology


• Boundary between imperative and declarative 
layers is good


• Nothing revolutionary, but an evolution and  
amalgamation of existing technologies




Feedback?
• Used dagger.io?


• Used cuelang.org?


• Can recommend similar / alternative tools?


• Declarative vs. imperative vs. mix of both?


• Thanks for your attention! ♥

http://dagger.io
http://cuelang.org


Krischerstr. 100

40789 Monheim

+49 2173 3366-0


Ohlauer Str. 43 
10999 Berlin

 

Ludwigstr. 180E 
63067 Offenbach

 

Kreuzstr. 16 
80331 München

 

Hermannstrasse 13 
20095 Hamburg

 

Erftstr. 15-17

50672 Köln

 

Königstorgraben 11

90402 Nürnberg


innoQ Deutschland GmbH

www.innoq.com
Feedback? Contact!

Fabian Kretzer

fabian.kretzer@innoq.com

innoq.social/@fabian


