How to

break down a

domain
to bounded contexts?



About me

Oliver Tigges, @otigges, oliver.tigges@innog.com
innoQ, http://innoQ.com
Software develop & IT consultant since 2001

many domains and businesses:

banking, payment, insurance, e-commerce, industrial,
media, railway, environmental agencies, medical,
de-mail, loT, internet start ups, etc.



About this talk

Goal: Find adequate and sustainable Bounded
Contexts in your domain

What are the most important influence factors?
What are suitable approaches and methods?

Context: Distributed applications, Microservices
architectures



> Before we talk about ,how"...

> Let’s talk about:
> Why?
> Who?

> When?



> Goal: Independence of systems and teams

Design & Releasing & Runtime &
Implementation Deployment Operations



How to achieve this?
> Bounded contexts

> (Self contained) Systems matching these bounded
contexts
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Who identifies contexts?

Alberto Brandolini says: Actually in most projects:

> Domain experts > Software developers &
architects

> Devteam

> UX experts

> Facilitator



Approach



Context boundary == System boundary

> If Bounded Context defines the technical system
boundaries, it not only partitions domain model
but also defines units for:

> development (teams)
> deployment

> availability

> scalability

> security zones



What to consider?

Domain model: Domain objects and their relations
. Use Cases, processes and workflows
. Quality goals, non-functional requirements

. Organizational aspects



Domain model

|[dentify domain objects: events, aggregates, etc.

Analyze and describe relations between domain
objects

Be aware of an object’s varying charachteristics in
different use cases

Maybe try Event Storming, Alberto Brandolini



Process ownership

|dentify processes that need to be owned and
controlled by one person in charge and one team

Concentrate responsibility for business goals / KPIs
in one hand

> Examples: User registration, eCommerce checkout,
conversion rates



Quality goals

> Derived from business goals

> Examples:
> Time 2 Market (release/deployment cycles)
> Security
> Availability
> Load and performance (read/write)
> Scalability

> User experience



Organizational constraints

> Do you have authorization and power to adapt the
organization to your system design?

> What are the constraints you can‘t change?

> Corporate structures
> Teams, people and skillsets

>
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Approach

> Like every process in software architecture and
development:

> lterative

Trade-Off
Decissio
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|dentify system candidates
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Repeat



Example
Retail Banking



Find initial system candidates
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Find initial system candidates
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Initial candidates

> Looking at the domain model you could identify
these candidates for Bounded Contexts / systems:
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Challenge system candidates

> Typical change scenarios in our example system
> Implement additional TAN method
> New credit product
> New conditions for loans
> Changes in legal or supervisory regulations
> Reversal of design decisions

> Observe potential issues

> Number of systems that need to be changed and
released for a change

> Coordination efforts over several teams



Scenario Customer Account Cards Credit

Change of credit conditions S S - L

New verification method S L L

Change of external rating
agency

New credit product - - - L




Quality requirements

> ldentify main building blocks and use cases of each system
candidate

> List quality requirements of each building block
> Security (PCl scope?) and data privacy (personal data?)
> Time to market, expected release frequency
> Availability, max downtime, max recovery time
> User groups and UX requirements
> Performance, response times, throughput, reads/writes
> And other relevant requirements

> Quality requirements of system are the sum of their building
block’s requirements



~ 10 Employees/clerks Users » 100,000 Customers
functional, experts Ul/Ux customer experience
low Availability high
complex, versioned Data model simple, flat
few reads/writes Data access many reads
monthly Releasing daily

System candidate ,,Credit"

<<use case’? <{<use case»>

Credit Offering Credit Sales
Configuration Process

Credit expert Customer
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Process ownership

> Some processes will span several of identified system
candidates, e.g.:

> Sales processes for credits/loans: Customer, Account, Credit Sales

> Probably one owner should be responsible for:
> End to end functionality

> Consistent, smooth user experience
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Organizational aspects

> System design could/should reflect structures of the
organization:

> By products: debit, credit, investment, real estate
> By sales channels: direct, stationary, brokers, agencies

> By customer segments: existing customers, new customers,
high-networth, etc.

> By any informal structures developed by people or history
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Choose Calculate Customer Credit New
Product Conditions data Rating Customer
(Registration) (or refusal)

Self Care —> Up Se[“ng —> Calculate — Credit — New Contract
Conditions Rating (or refusal)

Customer Care
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Wrap-up



Practical tips

> Record system design decisions:
> Options considered
> Options discarded
> Reason for discarding
> Advantages for current design

> Document assumptions, quality requirements and
organizational constraints



Conclusion

Finding sustainable, autonomous SCS can be a long-
running process

Right people: Domain experts, product owners and
architects/engineers should work out the system
design cooperatively

There are a lot of aspects to consider and trade-offs to
be made

The iterative process of challenging and adapting the
system design is never finished.



Thank you



