
How to
break down a

domain
to bounded contexts?

>  Oliver Tigges, @otigges, oliver.tigges@innoq.com

>  innoQ, http://innoQ.com

>  Software develop & IT consultant since 2001

>  many domains and businesses:
banking, payment, insurance, e-commerce, industrial,
media, railway, environmental agencies, medical,
de-mail, IoT, internet start ups, etc.

About me

>  Goal: Find adequate and sustainable Bounded
Contexts in your domain

>  What are the most important influence factors?

>  What are suitable approaches and methods?

>  Context: Distributed applications, Microservices
architectures

About this talk

>  Before we talk about „how“...

>  Let‘s talk about:

>  Why?

>  Who?

>  When?

>  Goal: Independence of systems and teams

Design &
Implementation

Releasing &
Deployment

Runtime &
Operations

1 2 3

How to achieve this?

>  Bounded contexts

>  (Self contained) Systems matching these bounded
contexts

Customer

Account

Booking

Rating

Debit Cards

Credit Cards

Account Statement

Credit Offer

Credit Contract

Credit Line

Contact History

Settings

Standing OrderDirect Debit

Transaction

Installment

Credit Sales
 Context

Accounting Context

CRM Context

Cards Context

Interest

Account

Customer Contract

Messaging

Domain
Event

Subscribe

Publish

Customer Supplier
Bounded
Context

B

Bounded
Context

A

Bounded
Context

C

Conformist

User interface

Business logic

Data storage

SCS B

User interface

Business logic

Data storage

SCS C

User interface

Business logic

Data storage

SCS A

Team A Team B Team C

Synchronous call

Asyncronous callAsyncronous call

UI Integration

Actually in most projects:

>  Software developers &
architects

Who identifies contexts?
Alberto Brandolini says:

>  Domain experts

>  Dev team

>  UX experts

>  Facilitator

Approach

>  If Bounded Context defines the technical system
boundaries, it not only partitions domain model
but also defines units for:

>  development (teams)

>  deployment

>  availability

>  scalability

>  security zones

Context boundary == System boundary

1.  Domain model: Domain objects and their relations

2.  Use Cases, processes and workflows

3.  Quality goals, non-functional requirements

4.  Organizational aspects

What to consider?

>  Identify domain objects: events, aggregates, etc.

>  Analyze and describe relations between domain
objects

>  Be aware of an object’s varying charachteristics in
different use cases

>  Maybe try Event Storming, Alberto Brandolini

Domain model

>  Identify processes that need to be owned and
controlled by one person in charge and one team

>  Concentrate responsibility for business goals / KPIs
in one hand

>  Examples: User registration, eCommerce checkout,
conversion rates

Process ownership

>  Derived from business goals

>  Examples:

>  Time 2 Market (release/deployment cycles)

>  Security

>  Availability

>  Load and performance (read/write)

>  Scalability

>  User experience

>  …

Quality goals

>  Do you have authorization and power to adapt the
organization to your system design?

>  What are the constraints you can‘t change?

>  Corporate structures

>  Teams, people and skillsets

>  …

Organizational constraints

Domain Model Quality goals

Organizational
constraints

Process
ownership

>  Like every process in software architecture and
development:

>  Iterative

>  Identify system candidates

>  Evaluate

>  Trade-offs

>  Repeat

Approach

Identify
candidates

Challenge &
Evaluate

Trade-Off
Decissions

Example
Retail Banking

Find initial system candidates

Customer

Account

Booking

Rating

Debit Cards

Credit Cards

Account Statement

Credit Offer

Interest
Credit Contract

Credit Line

Contact History

Settings

Standing Order
Direct Debit

Transaction

Installment

Find initial system candidates

Customer

Account

Booking

Rating

Debit Cards

Credit Cards

Account Statement

Credit Offer

Interest
Credit Contract

Credit Line

Contact History

Settings

Standing Order
Direct Debit

Transaction

Installment Credit

Account

Customer

Cards

>  Looking at the domain model you could identify
these candidates for Bounded Contexts / systems:

Initial candidates

Cu
st
om

er

Ac
co
un
t

Ca
rd
s

Cr
ed
it

>  Typical change scenarios in our example system
>  Implement additional TAN method

>  New credit product

>  New conditions for loans

>  Changes in legal or supervisory regulations

>  Reversal of design decisions

>  Observe potential issues
>  Number of systems that need to be changed and

released for a change

>  Coordination efforts over several teams

Challenge system candidates

Scenario Customer Account Cards Credit

Change of credit conditions S S - L

New verification method S L L -

Change of external rating
agency L - - M

New credit product - - - L

…

>  Identify main building blocks and use cases of each system
candidate

>  List quality requirements of each building block
>  Security (PCI scope?) and data privacy (personal data?)
>  Time to market, expected release frequency
>  Availability, max downtime, max recovery time
>  User groups and UX requirements
>  Performance, response times, throughput, reads/writes
>  And other relevant requirements

>  Quality requirements of system are the sum of their building
block‘s requirements

Quality requirements

~ 10 Employees/clerks Users > 100,000 Customers

functional, experts UI/UX customer experience

low Availability high

complex, versioned Data model simple, flat

few reads/writes Data access many reads

monthly Releasing daily

System candidate „Credit“

<<use case>>
Credit Offering
Configuration

<<use case>>
Credit Sales

Process

… …

Credit expert Customer

Pub/Sub

New Credit
Offering

Iteration 1
Cu

st
om

er

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cr
ed

it
Sa

le
s

>  Some processes will span several of identified system
candidates, e.g.:

>  Sales processes for credits/loans: Customer, Account, Credit Sales

>  Probably one owner should be responsible for:

>  End to end functionality

>  Consistent, smooth user experience

Process ownership

Cu
st

om
er

Ac
co

un
t

Cr
ed

it
Sa

le
s

Cu
st

om
er

Cr
ed

it
Sa

le
s

Choose
Product

Calculate
Conditions

Credit
Rating

Credit
Account
(or refusal)

Customer
data

(Sign-Up | Load)

Choose
Product

Calculate
Conditions

Credit
Rating

Credit
Account
(or refusal)

Customer
data

(Sign-Up | Load)

Credit Sales

Pub/Sub

Contract
Created

Customer
Created

<<Use Case>>

Rating

Cu
st

om
er

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cr
ed

it
Sa

le
s

>  System design could/should reflect structures of the
organization:

>  By products: debit, credit, investment, real estate

>  By sales channels: direct, stationary, brokers, agencies

>  By customer segments: existing customers, new customers,
high-networth, etc.

>  By any informal structures developed by people or history

Organizational aspects

Cu
st

om
er

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cr
ed

it
Sa

le
s

Debit Consumer Credits Home Loans

Cu
st

om
er

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cr
ed

it
Sa

le
s

Customer Care Customer Akquisition…

Cu
st

om
er

 C
ar

e

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cu
st

om
er

Aq

ui
si

tio
n

Customer Care Customer Akquisition…

Choose
Product

Calculate
Conditions

Credit
Rating

New
Customer

(or refusal)

Customer
data

(Registration)

Customer Acquisition

Self Care Up Selling
Credit
Rating

New Contract
(or refusal)

Calculate
Conditions

Customer Care

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Pub/Sub

Cu
st

om
er

 C
ar

e

Cu
st

om
er

Ac

qu
is

iti
on

Contract
Created

Customer
Created

Cu
st

om
er

Ac

qu
is

iti
on

Ac
co

un
t

Ca
rd

s

Cr
ed

it
O
ffe

rin
gs

Cu
st

om
er

 C
ar

e

Team A Team B Team C

PO 1 PO 2

Wrap-up

>  Record system design decisions:

>  Options considered

>  Options discarded

>  Reason for discarding

>  Advantages for current design

>  Document assumptions, quality requirements and
organizational constraints

Practical tips

>  Finding sustainable, autonomous SCS can be a long-
running process

>  Right people: Domain experts, product owners and
architects/engineers should work out the system
design cooperatively

>  There are a lot of aspects to consider and trade-offs to
be made

>  The iterative process of challenging and adapting the
system design is never finished.

Conclusion

Thank you

