How to

break down a

domain
to bounded contexts?



About me

Oliver Tigges, @otigges, oliver.tigges@innog.com
innoQ, http://innoQ.com
Software develop & IT consultant since 2001

many domains and businesses:

banking, payment, insurance, e-commerce, industrial,
media, railway, environmental agencies, medical,
de-mail, loT, internet start ups, etc.



About this talk

Goal: Find adequate and sustainable Bounded
Contexts in your domain

What are the most important influence factors?
What are suitable approaches and methods?

Context: Distributed applications, Microservices
architectures



> Before we talk about ,how"...

> Let’s talk about:
> Why?
> Who?

> When?



> Goal: Independence of systems and teams

Design & Releasing & Runtime &
Implementation Deployment Operations



How to achieve this?
> Bounded contexts

> (Self contained) Systems matching these bounded
contexts



\

— e - == ——
- -
-— -
—
—
—

Contact History

Settings

Debit Cards

Account \

Account Statement \

Booking

Customer

Contract [

Account

Credit Cards

Transaction

Credit Line

Installment

Interest

Credit Contract

\

Direct Debit

Standing Order

N

~

=~~~ _ _Accounting Context

Context

Credit Offer

Credit Sales //I

/
/



Bounded
Context

A

Conformist

Userinterface

Ul Integration

T

Bounded
Context
B

Customer

Supplier

User interface

Synchronous call

Bounded
Context

C

User interface

S~
>

Business logic Business logic Business logic N
_ Asyncronous call / Asyncronous call \
- \
\
Data storage / Data storage Data storage \
/ \
SCSA l SCSB SCSC Publish \
Subscribe , Domain
| Event
\ ,
\ /
\ /
Team A Team B Team C /
X /
Messaging }‘




Who identifies contexts?

Alberto Brandolini says: Actually in most projects:

> Domain experts > Software developers &
architects

> Devteam

> UX experts

> Facilitator



Approach



Context boundary == System boundary

> If Bounded Context defines the technical system
boundaries, it not only partitions domain model
but also defines units for:

> development (teams)
> deployment

> availability

> scalability

> security zones



What to consider?

Domain model: Domain objects and their relations
. Use Cases, processes and workflows
. Quality goals, non-functional requirements

. Organizational aspects



Domain model

|[dentify domain objects: events, aggregates, etc.

Analyze and describe relations between domain
objects

Be aware of an object’s varying charachteristics in
different use cases

Maybe try Event Storming, Alberto Brandolini



Process ownership

|dentify processes that need to be owned and
controlled by one person in charge and one team

Concentrate responsibility for business goals / KPIs
in one hand

> Examples: User registration, eCommerce checkout,
conversion rates



Quality goals

> Derived from business goals

> Examples:
> Time 2 Market (release/deployment cycles)
> Security
> Availability
> Load and performance (read/write)
> Scalability

> User experience



Organizational constraints

> Do you have authorization and power to adapt the
organization to your system design?

> What are the constraints you can‘t change?

> Corporate structures
> Teams, people and skillsets

>



Process
ownership

Domain Model Domain :
uality goals
—_— Architecture w

Organizational
constraints



Approach

> Like every process in software architecture and
development:

> lterative

Trade-Off
Decissio

A\

|dentify system candidates

Evaluate

A

Trade-offs

v

A

Repeat



Example
Retail Banking



Find initial system candidates

Rating
Contact History Account Statement

Settings Booking

Customer
Credit Line
/ /

Debit Cards

Account
\

/ Installment

Credit Cards

. Interest A .
Transaction Credit Contract

Direct Debit

Standing Order Credit Offer




Find initial system candidates

Direct Debit

Rating
Contact History Account Statement
Customer
Settings Booking
\
Customer
Credit Line
_— Account
Debit Cards / \
d Account L
ras .
/ Installment Credit
Credit Cards
Transaction nterest Credit Contract

Standing Order

Credit Offer




Initial candidates

> Looking at the domain model you could identify
these candidates for Bounded Contexts / systems:

S
@
(=
o
e
)
=
(®




Challenge system candidates

> Typical change scenarios in our example system
> Implement additional TAN method
> New credit product
> New conditions for loans
> Changes in legal or supervisory regulations
> Reversal of design decisions

> Observe potential issues

> Number of systems that need to be changed and
released for a change

> Coordination efforts over several teams



Scenario Customer Account Cards Credit

Change of credit conditions S S - L

New verification method S L L

Change of external rating
agency

New credit product - - - L




Quality requirements

> ldentify main building blocks and use cases of each system
candidate

> List quality requirements of each building block
> Security (PCl scope?) and data privacy (personal data?)
> Time to market, expected release frequency
> Availability, max downtime, max recovery time
> User groups and UX requirements
> Performance, response times, throughput, reads/writes
> And other relevant requirements

> Quality requirements of system are the sum of their building
block’s requirements



~ 10 Employees/clerks Users » 100,000 Customers
functional, experts Ul/Ux customer experience
low Availability high
complex, versioned Data model simple, flat
few reads/writes Data access many reads
monthly Releasing daily

System candidate ,,Credit"

<<use case’? <{<use case»>

Credit Offering Credit Sales
Configuration Process

Credit expert Customer




lteration 1

Pub/Sub

A

New Credit 1

{

sa)eg Jipal)

s3ulayo Npal)

lawolsn)



Process ownership

> Some processes will span several of identified system
candidates, e.g.:

> Sales processes for credits/loans: Customer, Account, Credit Sales

> Probably one owner should be responsible for:
> End to end functionality

> Consistent, smooth user experience



Choose
Product

0
L
©
7))
=
t
@
S
)

Calculate
Conditions

Credit Sales

Customer Credit Credit

data Account
(Sign-Up | Load) (or refusal)

Rating

Customer
Customer




Choose
Product

Calculate
Conditions

Customer

data
(Sign-Up | Load)

Credit Sales

Credit
Rating

Credit
Account

(or refusal)




Customer

Pub/Sub

Credit Offerings

«Use Case»

Rating

Customer
Created

Contract
Created

Credit Sales




Organizational aspects

> System design could/should reflect structures of the
organization:

> By products: debit, credit, investment, real estate
> By sales channels: direct, stationary, brokers, agencies

> By customer segments: existing customers, new customers,
high-networth, etc.

> By any informal structures developed by people or history



sajes 11pal)

HomeL\oans

9
e
9.+.0
A aa

)

I sSuliayo 1pas)

Jawojlsn)



o..s Customer Akquisition

[/
Qi
A

Customer Care

sajes J1pal)

S3uLajO NpaI)

JUN0JJY

lawolsn)




ot Customer/Akquisition

Customer Care

uonisinby

lawolsn)

sSulByO Npal)

ale) Jawolsn)




Choose Calculate Customer Credit New
Product Conditions data Rating Customer
(Registration) (or refusal)

Self Care —> Up Se[“ng —> Calculate — Credit — New Contract
Conditions Rating (or refusal)

Customer Care




- = = — — >EERPEIIE )

SSuuay Hpal)

Pub/Sub

- — — = JUunoddy

|

Contract
Created

uol}isinboy
13wolsn)

Customer
Created

|



ale) J1awolsn)

S3ul9yO Npa)

uol}isinboy

JLawolsn)

PO 2

PO 1

=

Team C

Team B

Team A



Wrap-up



Practical tips

> Record system design decisions:
> Options considered
> Options discarded
> Reason for discarding
> Advantages for current design

> Document assumptions, quality requirements and
organizational constraints



Conclusion

Finding sustainable, autonomous SCS can be a long-
running process

Right people: Domain experts, product owners and
architects/engineers should work out the system
design cooperatively

There are a lot of aspects to consider and trade-offs to
be made

The iterative process of challenging and adapting the
system design is never finished.



Thank you



