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About me



>  Goal: Find adequate and sustainable Bounded 
Contexts in your domain

>  What are the most important influence factors?

>  What are suitable approaches and methods?

>  Context: Distributed applications, Microservices 
architectures

About this talk



>  Before we talk about „how“...

>  Let‘s talk about:

>  Why?

>  Who? 

>  When?



>  Goal: Independence of systems and teams

Design & 
Implementation

Releasing & 
Deployment

Runtime & 
Operations

1 2 3



How to achieve this?

>  Bounded contexts

>  (Self contained) Systems matching these bounded 
contexts 
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Actually in most projects:

>  Software developers & 
architects

Who identifies contexts?
Alberto Brandolini says:

>  Domain experts

>  Dev team 

>  UX experts

>  Facilitator



Approach



>  If Bounded Context defines the technical system 
boundaries, it not only partitions domain model 
but also defines units for:

>  development (teams)

>  deployment

>  availability 

>  scalability 

>  security zones

Context boundary == System boundary



1.  Domain model: Domain objects and their relations

2.  Use Cases, processes and workflows

3.  Quality goals, non-functional requirements

4.  Organizational aspects

What to consider?



>  Identify domain objects: events, aggregates, etc. 

>  Analyze and describe relations between domain 
objects

>  Be aware of an object’s varying charachteristics in 
different use cases

>  Maybe try Event Storming, Alberto Brandolini

Domain model



>  Identify processes that need to be owned and 
controlled by one person in charge and one team

>  Concentrate responsibility for business goals / KPIs 
in one hand

>  Examples: User registration, eCommerce checkout, 
conversion rates

Process ownership



>  Derived from business goals

>  Examples:

>  Time 2 Market (release/deployment cycles)

>  Security

>  Availability

>  Load and performance (read/write)

>  Scalability

>  User experience

>  …

Quality goals



>  Do you have authorization and power to adapt the 
organization to your system design?

>  What are the constraints you can‘t change?

>  Corporate structures

>  Teams, people and skillsets

>  …

Organizational constraints



Domain Model Quality goals

Organizational 
constraints

Process 
ownership



>  Like every process in software architecture and 
development: 

>  Iterative

>  Identify system candidates

>  Evaluate

>  Trade-offs

>  Repeat

Approach

Identify 
candidates

Challenge & 
Evaluate

Trade-Off 
Decissions



Example 
Retail Banking



Find initial system candidates
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>  Looking at the domain model you could identify 
these candidates for Bounded Contexts / systems:

Initial candidates
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>  Typical change scenarios in our example system
>  Implement additional TAN method

>  New credit product

>  New conditions for loans

>  Changes in legal or supervisory regulations

>  Reversal of design decisions

>  Observe potential issues
>  Number of systems that need to be changed and 

released for a change

>  Coordination efforts over several teams

Challenge system candidates



Scenario Customer Account Cards Credit

Change of credit conditions S S - L

New verification method S L L -

Change of external rating 
agency L - - M

New credit product - - - L

…



>  Identify main building blocks and use cases of each system 
candidate

>  List quality requirements of each building block
>  Security (PCI scope?) and data privacy (personal data?)
>  Time to market, expected release frequency
>  Availability, max downtime, max recovery time
>  User groups and UX requirements
>  Performance, response times, throughput, reads/writes 
>  And other relevant requirements

>  Quality requirements of system are the sum of their building 
block‘s requirements

Quality requirements



~ 10 Employees/clerks Users > 100,000 Customers

functional, experts UI/UX customer experience

low Availability high

complex, versioned Data model simple, flat

few reads/writes Data access many reads

monthly Releasing daily

System candidate „Credit“

<<use case>> 
Credit Offering 
Configuration

<<use case>> 
Credit Sales 

Process

… …

Credit expert Customer
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>  Some processes will span several of identified system 
candidates, e.g.:

>  Sales processes for credits/loans: Customer, Account, Credit Sales

>  Probably one owner should be responsible for:

>  End to end functionality

>  Consistent, smooth user experience 

Process ownership
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>  System design could/should reflect structures of the 
organization:

>  By products: debit, credit, investment, real estate

>  By sales channels: direct, stationary, brokers, agencies

>  By customer segments: existing customers, new customers,  
high-networth, etc. 

>  By any informal structures developed by people or history

Organizational aspects
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Wrap-up



>  Record system design decisions:

>  Options considered 

>  Options discarded

>  Reason for discarding

>  Advantages for current design

>  Document assumptions, quality requirements and 
organizational constraints

Practical tips



>  Finding sustainable, autonomous SCS can be a long-
running process

>  Right people: Domain experts, product owners and 
architects/engineers should work out the system 
design cooperatively

>  There are a lot of aspects to consider and trade-offs to 
be made 

>  The iterative process of challenging and adapting the 
system design is never finished.

Conclusion



Thank you


