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Typical Scenario?!



A monolith contains
numerous things inside of
a single system ...




Various Domains




User interface
Business logic
Persistence




..aswellas a lot of
modules, components,
frameworks and libraries.
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With all these layers

in one place, a

monolith tends to
Srow.
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Reality

cost of change
understandability

time



Why?

Company XApp - Module dependencies

The following is a graph visualizing the dependencies between the OSGi modules in Company X Application, defined via Spring Dynamic Modules
XML files.
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Alternatives?



Focus on Technology









Improvement
IS more than Refactoring
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Improve
e define improvement strategy
e refactor
e re-architect
® re-organize
® remove debt



Improve
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Practices —
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A smaller Codebase
makes things easier



introduce explicit
boundaries



Just use Microservices
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Microservice Characteristics

small
each running in its own process
lightweight communicating mechanisms (often HTTP)
built around business capabilities
independently deployable
mininum of centralized management
may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html




Improvement Approaches
applied






Frontend Switch
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Change on Copy
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Change via Extraction




Request Cascades

Customer Request

v
Monolith
Module 1 > Service 2 Service 5
Service 3 > Service 4




Request Cascades
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Request Cascades Lower
Availability



Service Discovery

Service
Registry
1. register seer\f')/ \)ver service instances
& heartbeat
|
Service 3. call service instance Client




Strangulate Bad Parts




Architectural Decisions
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> Domain Architecture

> Macro Architecture

> Micro Architecture
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..50 we show the different levels of decisions... . .
Domain Architecture

- Which boxes?
[j - Use Cases
D - SeTu._Lh:&Turpose

Micro Architecture ,
o Macro Architecture
- What’s inside?
- What’s in between?

mponent interns
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Steps for modularisation

e identify domains

e group teams by domain
e agree on macro

architecture
e focus delivery pipeline on

end-to-end features

User Management e team decides migration
Product Management

Payment approach case-by-case



Self-Contained System
(SCS)




An SCS contains 1ts own

user interface, specific

business logic and
separate data storage




Besides a web interface a self-
contained system can provide

e an optional API.
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The business logic can consist
of microservices to solve
domain specific problems.



e Fvery SCS brings its own data
storage and with its redundant

data depending on the context

and domain.




Team 2

Team 1

Team 3

The manageable domain
specific scope enables the
development, operation
and maintenance of an
SCS by a single team.



Integration?



Self-contained Systems

should be integrated over their
=l web interfaces to minimize
e coupling to other systems.
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Instead remote API calls should
be handled asynchronously to
reduce dependencies and

&
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prevent error cascades.




more information on

self-contained systems
(SCS) can be found at

http://scs-architecture.org/
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Summary

> aim42 provides structure for software modernization
> SCSs are a reasonable approach to Microservices

> Not everyone who wants microservices is
immediately capable to establish them

> Don’t overwhelm people, change one thing at a
time
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