Microservices und SCS
zur Architekturmodernisierung

Michael Vitz
Alexander Heusingfeld

innoQ’

Alexander Heusingfeld

Senior Consultant @ innoQ

alexander.heusingfeld@innog.com

@goldstift

Michael Vitz

Senior Consultant @ innoQ

michael.vitz@innog.com

@michaelvitz

Typical Scenario?!

A monolith contains
numerous things inside of
a single system ...

Various Domains

User interface
Business logic
Persistence

..aswellas a lot of
modules, components,
frameworks and libraries.

p)
N
>,
N
©
»,
p)
p,
C
-+
©
C
i

in one place, a

monolith tends to

SroOw.

With all these layers

in one place, a

monolith tends to
Srow.

Goal

/‘\

understandability

cost of change

time

Reality

cost of change
understandability

time

Why?

Company XApp - Module dependencies

The following is a graph visualizing the dependencies between the OSGi modules in Company X Application, defined via Spring Dynamic Modules
XML files.

Typical Reaction?

Code Improvements ..

Code Improvements ..

Prepare In(]:prgve Handle Too
Change lels Many
Structure
Extract Reusable [Restructure J [Refactor]
Component Code Code
Remove Nested
Control Structures
Integrate Reusable Isolate Parts Improve Untangle Code
Component (Modularize) Responsibility
. Handle
Hide : _ If-Else Chains
Unmaintainable ' Remove Move Behavior
Code Unused Parts Close To Data
Break
. Dependencies
Interface Introduce Deprecate Split Up
Segregation Interfaces Obsolete Parts Oversized Parts
Anticorruption Gateway Toggle Feature Improve
Layer Code Layout
Asset
Capture Eliminate
Navigation Code Legend:
Event Interception Practice (Category]

Alternatives?

Focus on Technology

Improvement
IS more than Refactoring

42

alm

Architecture Improvement Method

<
&
Ol

improve

e architecture
® Ccode
e runtime

o <
® Organization @\ﬁl‘,
Q
>

Improve

<
&
Ol

improve

Improve
e define improvement strategy
e refactor
e re-architect
® re-organize
® remove debt

Improve

Fundamentals

NS
improve

Improve

Processes

Improve

Code

Structure

Improve
Crosscutting
Concepts

Improve

Technical

Infrastructure

Improve
Analysability
& Evaluability

Fast
Feedback

Improve
Iteratively

Prototype
Improvement

Verify After
Every
Change

Reduce
Complexity

Explicit

Assumptions

Improvement

Group

Actions

Legend:

tundamental

[Category]

NS
improve

Practices

Improve Improve Improve

Crosscutting

Improve
Technical
Infrastructure

Improve
Analysability
& Evaluability

Processes Code

Structure

Concepts

Enable Team

Improve
Engineering

Schedule Work

Improve
Delivery

Refactor
Code

Improve
Operations

Improve
Flow

Improve
Governance

Restructure
Code

-—

Extract Business
Domain

Improve
Hardware

Improve Use of
Technology

Automate
Release

Introduce Bette
Technology

-~

Improve
Supporting
Software

Quality Driven
Software
Architecture

Improve Test
Infrastructure

Improve
Logging

Improve Test
Automation

Measure

Legend:

Practice

[CategoryJ

Practices —

Prepare Iné%‘ggle Handle Too
Change Many
Structure
Extract Reusable :;‘] [Refactor]
Component Code
Remove Nested
iy Control Structures
Integrate Reusable Isolate Parts | | Improve Untangle Code
Component (Modularize) || Responsibility
e ———EE Handle
Hide E _ If-Else Chains
Unmaintainable ' Remove Move Behavior
Code Unused Parts Close To Data
Break
. Dependencies
Interface Introduce Deprecate Split Up
Segregation Interfaces Obsolete Parts Oversized Parts
Anticorruption Gateway Toggle Feature Improve
Layer Code Layout
Asset
Capture Eliminate
Navigation Code Legend:
Event Interception Practice (Category)

Determine

Improvement

Approach

Big Bang
(Cold Turkey)

Branch by
Abstraction

Change
On Copy

Value-based
Improvement

Managed
Evolution

Change
Via Split

Frontend
Switch

Strangulate
Bad Parts

Change By
Extraction

Butterfly

Bridge To
New Town

Chicken Little

Keep Data,
Toss Code

./
iImprove

Data
Migration

A smaller Codebase
makes things easier

introduce explicit
boundaries

Just use Microservices

> Everyone’s doing Microservices, so you should, too
> Everything will be faster with Microservices

> There are lots of interesting tools to play with, much more

interesting than the boring business domain

> With Microservices we’ll be more agile

Just use Microservices

> Everyone’s doing Microservices, so you should, too
> Everything will be faster with Microservices

> There are lots of interesting tools to play with, much more

interesting than the boring business domain

> With Microservices we’ll be more agile

Microservice Characteristics

small
each running in its own process
lightweight communicating mechanisms (often HTTP)
built around business capabilities
independently deployable
mininum of centralized management
may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html

Improvement Approaches
applied

Frontend Switch

Frontend Switch

.....................................

Reverse Proxyi
Customer Request > 5

Monolith

.....................................

.....................................

Change on Copy

Request Cascades

Customer Request

\4

Monolith Copy A

Monolith Copy B

.....................................

.....................................

Monolith Copy C

.....................................

Request Cascades

Customer Request

\4

Monolith Copy A

Monolith Copy B

.....................................

.....................................

Monolith Copy C

.....................................

Resilience

The

P tsenmers
> -
isolate Failure e T
. g:s(iign tSilIld If{)epclioyS .
> apply graceful degradation Ready ot

: L e
A R e SRR E LA R
e L U
SN]
) >

failure a——

> be responsive in case of

Change via Extraction

Request Cascades

Customer Request

v
Monolith
Module 1 > Service 2 Service 5
Service 3 > Service 4

Request Cascades

eeeeeeeeeeeeeee

...

Module 1

..

Request Cascades Lower
Availability

Service Discovery

Service
Registry
1. register seer\f')/ \)ver service instances
& heartbeat
|
Service 3. call service instance Client

Strangulate Bad Parts

Architectural Decisions

Architectural Decisions

Sillg]

Architectural Decisions

oL H

> Macro Architecture

Architectural Decisions

oL H

> Domain Architecture

> Macro Architecture

> Micro Architecture

..50 we show the different levels of decisions...

..50 we show the different levels of decisions... . .
Domain Architecture

- Which boxes?
l::] f - Use Cases
~ D - Setm—hifurpose

I T I

..50 we show the different levels of decisions... . .
Domain Architecture

- Which boxes?
E] - Use Cases
- Seﬁurpose

Macro Architecture
- What’s in between?

[:' :] tocols, Deployment

..50 we show the different levels of decisions... . .
Domain Architecture

- Which boxes?
[j - Use Cases
D - SeTu._Lh:&Turpose

Micro Architecture ,
o Macro Architecture
- What’s inside?
- What’s in between?

mponent interns
tocols, Deployment

s for modularisation

Steps for modularisation

e identify domains

User Management
Product Management

Payment

Steps for modularisation

e identify domains

e group teams by domain

User Management
Product Management

Payment

Steps for modularisation

e identify domains

e group teams by domain

e agree on macro

architecture

User Management
Product Management

Payment

Steps for modularisation

e identify domains

e group teams by domain

e agree on macro

architecture
e focus delivery pipeline on

end-to-end features

User Management
Product Management

Payment

Steps for modularisation

e identify domains

e group teams by domain
e agree on macro

architecture
e focus delivery pipeline on

end-to-end features

User Management e team decides migration
Product Management

Payment approach case-by-case

Self-Contained System
(SCS)

An SCS contains 1ts own

user interface, specific

business logic and
separate data storage

Besides a web interface a self-
contained system can provide

e an optional API.

/
\

\

VA

The business logic can consist
of microservices to solve
domain specific problems.

e Fvery SCS brings its own data
storage and with its redundant

data depending on the context

and domain.

Team 2

Team 1

Team 3

The manageable domain
specific scope enables the
development, operation
and maintenance of an
SCS by a single team.

Integration?

Self-contained Systems

should be integrated over their
=l web interfaces to minimize
e coupling to other systems.

&
N

Instead remote API calls should
be handled asynchronously to
reduce dependencies and

&
i\

prevent error cascades.

more information on

self-contained systems
(SCS) can be found at

http://scs-architecture.org/

conclusion

Summary

Summary

> aim42 provides structure for software modernization

Summary

> aim42 provides structure for software modernization

> SCSs are a reasonable approach to Microservices

Summary

> aim42 provides structure for software modernization
> SCSs are a reasonable approach to Microservices

> Not everyone who wants microservices is
immediately capable to establish them

Summary

> aim42 provides structure for software modernization
> SCSs are a reasonable approach to Microservices

> Not everyone who wants microservices is
immediately capable to establish them

> Don’t overwhelm people, change one thing at a
time

Th a n k yO u | Alexander Heusingfeld, ¥ @goldstift

alexander.heusingfeld@innog.com

' ?
QU estions: Michael Vitz, ¥ @michaelvitz

CO m m e n tS? michael.vitz@innog.com

https://www.innog.com/en/talks/

innoQ Deutschland GmbH innoQ Schweiz GmbH

i n n O Q Krischerstr. 100 Ohlauer Strafde 43 Ludwigstrafie 180 E Kreuzstr. 16 Gewerbestr. 11
40789 Monheim am Rhein 10999 Berlin D-63067 Offenbach D-80331 Miinchen CH-6330 Cham
Germany Germany Germany Germany Switzerland

WWW.INNn0Jg.com Phone: +49 2173 3366-0 Phone: +41 41 743 0116

mailto:stefan.tilkov@innoq.com
http://www.innoq.com

