
A Question of Size
Stefan Tilkov, stefan.tilkov@innoq.com, @stilkov

Java Forum Nord 2017

Reviewing
architectures

Generic Architecture Review Results
Building

features takes
too long

Technical debt is
well-known and not

addressed

Deployment is way
too complicated

and slow

Replacement would
be way too expensive

Scalability has reached
its limit

Architectural quality
has degraded

“-ility” problems
abound

So let’s start with this …

… and cut it apart: Voilà, Microservices!

“Microservices” are building blocks of an architectural
style that uses deployment boundaries as a first-class
software architecture principle

How big shall each
individual service be?

 Just make things the right size

High Cohesion
Loose Coupling

Vocabulary

http://vanderburg.org/blog/Software/Development/cohesion.rdoc

inherent: existing in something as a permanent, essential,
or characteristic attribute

adhesive: able to stick fast to a surface or object; sticky:

cohesive: characterized by or causing cohesion

cohesion: the action or fact of forming a united whole; 
in physics: the sticking together of particles of the same
substance

Separate
separate

things

Join things
that belong

together

Building blocks

procedures

functions

libraries

modules

units
objects

classesimages

dynamic libraries

shared objects

components
services

microservices

VMscontainers

lambdas

Commonalities

dependencies

boundary

interface

environment
implementation

Information Hiding
“[I]t is almost always incorrect to begin the
decomposition of a system into modules on the
basis of a flowchart. We propose instead that one
begins with a list of difficult design decisions or
design decisions which are likely to change. Each
module is then designed to hide such a decision
from the others.”

David L. Parnas, 1971

http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Single Responsibility Principle
“A class [or module] should only have one reason to
change. […] The SRP is one of the simplest of the
principles, and one of the hardest to get right. Finding
and separating those responsibilities from one
another is much of what software design is really
about.”

“There is a corrolary here. An axis of change is only an
axis of change if the changes actually occur.”

Robert C. Martin, 1995/2003

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Indicators of strong cohesion

simple to understand

simple to explain

one reason to change

one stakeholder

difficult to split

(re-)used as a whole

Indicators of weak cohesion

hard to understand

difficult to explain

many reasons to change

multiple stakeholders

obviously divisible

partially re-used

Forces for separation
Different environments (scale, performance, security, …)

Parallel/isolated runtime

Crosscutting concerns

Frequency of change

Parallel/isolated development

Need for reuse

Technical dependencies
Domain dependencies

Implementation

Weight

Multiple Dimensions
Different Priorities

System

Layered system

Logic

Data

UI

M
od

ul
e

M
od

ul
e

M
od

ul
e

System System System

System of systems

Logic

Data

UI

Logic

Data

UI

Logic

Data

UI

Let’s talk about
Microservices

Microservices – Common Traits

> Independent deployment

> Focused on “one thing”

> Autonomous operation

> Isolated development

> Localized decisions

Benefits

1. Isolation

2. Autonomy

3. Indidual Scalability

4. Resilience

5. Speed

6. Experimentation

7. Rapid Feedback

8. Flexibility

9. Replaceability

10. Ecosystem

Example: Pricing Engine

> Default product prices

> General discounts

> Customer-specific discounts

> Campaign-related rebates
Event Bus/Infrastructure

→FaaS

FaaS – Function as a Service

> As small as possible

> A few hundred lines
of code or less

> Triggered by events

> Communicating
asynchronously

Characteristics: As seen on:
> Any recent Fred George talk

> Serverless Architecture(*)

> AWS Lambda

(*) https://leanpub.com/serverless

FaaS – Function as a Service

> Close collaboration – common goal

> Shared strong infrastructure dependency

> Common interfaces, multiple invocations

> Close similarity to actor-based environments

> Well suited to decomposable/“fuzzy” business problems

Consequences:

Example: Product Detail Page

> Core product data

> Prose description

> Images

> Reviews

> Related content

Orchestration

→μSOA

μSOA – Microservice-oriented Architecture

> Small, self-hosted

> Communicating
synchronously

> Cascaded/streaming

> Containerized

Characteristics: As seen on:
> Netflix

> Twitter

> Gilt

μSOA – Microservice-oriented Architecture

> Close collaboration – common goal

> Need for resilience/stability patterns for invocations

> Often combined with parallel/streaming approach

> Well suited to environments with extreme scalability requirements

Consequences:

Antipattern: Decoupling Illusion

Stakeholder

Stakeholder

Stakeholder

Platform Person

Example: Logistics Application

> Order management

> Shipping

> Route planning

> Invoicing

Frontend

→DDDD

Event Bus/Infrastructure

DDDD – Distributed Domain-driven Design

> Small, self-hosted

> Bounded contexts

> Redundant data/CQRS

> Business events

> Containerized

Characteristics: As seen on:
> (undisclosed)

DDDD – Distributed Domain-driven Design

> Loose coupling between context

> Acknowledges separate evolution of contexts

> Asynchronicity increases stability

> Well-suited for to support parallel development

Consequences:

That UI thing? Easy!

Assumption

Reality

Example: E-Commerce Site

> Register & maintain account

> Browse catalog

> See product details

> Checkout

> Track status

→SCS

SCS – Self-contained Systems

> Self-contained,
autonomous

> Including UI + DB

> Possibly composed
of smaller
microservices

Characteristics: As seen on:
> Amazon

> Groupon

> Otto.de

> https://scs-architecture.org

SCS – Self-contained Systems

> Larger, independent systems, Including data + UI (if present)

> Able to autonomously serve requests

> Light-weight integration, ideally via front-end

> No extra infrastructure needed

> Well suited if goal is decoupling of development teams

Consequences:

Web UI Integration: Links

System 1 System 2

Web UI Integration: Redirection

System 1 System 2

Web UI Integration: Transclusion

System 1 System 2

Building Block
0..1

*

So what?

Summary &
Recommendations

1. 
Explicitly design

system boundaries

2. 
Start front-to-back

instead of 
top-down or bottom-up

3. 
Modularize systems

using the appropriate
approach, including

monoliths

Stefan Tilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116

www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

@stilkovThat’s all I have.
thanks for listening!

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

About Stefan Tilkov

> CEO/Co-founder & principal consultant 
at innoQ

> Focus on architecture, REST, Web

> Messing with technology since 1993

> stefan.tilkov@innoq.com, @stilkov

About innoQ

> Offices in Monheim (near Cologne), Berlin,
Offenbach, Munich, Zurich

> ~125 employees

> Core competencies: software architecture consulting
and software development

> Privately owned, vendor-independent

> Clients in finance, telecommunications, logistics, e-
commerce; Fortune 500, SMBs, startups

www.innoq.com

Image Credit

Alice Popkorn, https://flic.kr/p/5NsmsK

hairchaser, https://flic.kr/p/aqNWyV

https://www.flickr.com/photos/alicepopkorn/
https://www.flickr.com/photos/41829005@N02/

