Mu@[ﬁ@f@m@ M@@@Hu{@h@ fC@@
Vicresarvicass
A 5@&%@}7 offf A[@[@[ﬁ@@]@h@@

Fellow
INNOQ
@ewolff
http://ewolff.com

http://ewolff.com/

Eberhard Wolff B FEACT'CAL GU|DE T'D

Continuous FIeINERINIITeIUE
Delivery DELIVERY

Der pragmatische Einstieg

.---"--I'II'1I

EBEERHARD WOLFF

dpunkt.verlag

T ———

http://continuous-delivery-buch.de/ http://continuous-delivery-book.com/

Eberhard Wolff

Microservices _ _
BRI [V CrOServices

FLEXIBLE SOFTWARE ARCHITECTURE

EBERHARD WOLFF

dpunkt.verlag

P

http://microservices-buch.de/ http://microservices-book.com/

Eberhard Wolff Eberhard Wolff

Microservices Microservices
Ein Uberblick Pri mer

A Short Overview

FREE!N!

http://microservices-buch.de/ http://microservices-book.com/
ueberblick.html primer.html

INNOQ

D a'- S Eberhard Wolff .
Microservices-
Praxisbuch

Grundlagen, Konzepte und Rezepte

A Practical Guide
2nd Edition

Principles, Concepts, and

Recipes

dpunkt.verlag

R — CoSia R NTOlI

http://microservices-praxisbuch.de http://practical-microservices.com/

Eberhard Wolff Eberhard Wolff

Microservices Microservices
Rezepte Recipes

Technologien im Uberblick Technology Overview

FREE!!
INNOQ INNOQ
http://microservices-praxisbuch.de/ http://practical-microservices.com/

rezepte.html recipes.html

Eric Evans

Domain-
Driven
Design
Referenz

Obersetzt ven

Michael Plsd
Christian Stettler

FREE!!

http://ddd-referenz.de/
https://domainlanguage.com/ddd/reference/

How to

Stepwise

Prefer Stepwise Migration!
Less risk
Faster return on investment

Easier to change priorities

Goals
Microservices have many benefits:
ndependent teams for a large project

ndependent scalability

ndependent deployment
Security — can add firewalls between microservices

Stability — independent crashes

hangeability

Typical Legacy System

Constraints: "Black Box Migration”
Try to understand as little of the monolith as possible!
Use as little of the monolith as possible!

ldeally: New technology and new architecture

If technology and architecture are great

— why migrate to microservices?

Blueprint Migration Approach

CUSTOMIZE!

Blueprint Migration Approach

Two parallel tasks

Both incremental

Identify Bounded Contexts

Identify Bounded Contexts

From a user's perspective

Gives rough idea about ideal architecture
Iterative: the next step is important

...not the desired end result

"Black box migration”: avoid reverse engineering code, database

schemas...

Migrate a Bounded Context

Migrate a Bounded Context

Migrate a Bounded Context
Bounded context = separate domain model

Separate domain = separate database schema

Ideally microservice =

bounded context including Ul

Better Yet: New Bounded Context

New requirements might justify a new Bounded Context

No need to understand old business logic
More support from business experts

Direct pay-off from new microservice

Adding a microservice is even better
than a migration!

Integrate Microservice and Deployment

Monolith
APl /Ul Integration

o
Possibly

Replication /
Events

Inteagrate Microservice and Deployment
Monolith

Asynchronous integration = decoupling

Ul integration (e.g. links) provides loose coupling

APl integration: Route some requests to the new system

Repeat

Choose the next bounded context
Note: Migration might never terminate

Great news!

Why migrate bounded context where risk is too high and / or pay-

off too low?

Blueprint Migration Approach

Build Infrastructure
Challenge: Operate a large number of microservices

No challenge for one microservice

i.e. build infrastructure when needed
...but not later

Operating 10 or 100 is quite different from 1.

Organizational Impact

1
!

Organizational Impact

Independent microservices enable independent teams

Delegate technological responsibilities to teams!

Teams should be responsible for a part of the domain!

Choose team member who want to support the migration!

Other Strategies

Other Strategies
Fit Organization:

Compromise architecture to keep organization

Change by Extension:

New code only in microservices

Strangler:

generic

Other Strategies
Fit Organization:

Gohabramise esideiting ghe e brsbnzstion
e otk ext

Strangler:

generic

Other Strategies

More:

https://speakerdeck.com/
ewolff/

monolith-to-microservices-a-comparison-of-strategies

Conclusion

Consider goals!

Blueprint: bounded contexts, infrastructure parallel
Consider just adding new microservices

Blueprint does not always fit

Consider organization, too

Migration might not terminate...

Wiy, MD@F@@@FWD@@@ F@JDH
AR Expericnee Report

Eberhard Wolff
Fellow
INNOQ
@ewolff <
http://ewolff.com "_-‘I ’ | ¥

http://ewolff.com/

Common Data Model

"The services need some common data.”

Common Data Model: Communication
Common data model for communication only
Data model = common library

All services must use latest version of library

Common Data Model: Communication
Change -> redeploy all services
No decoupled deployment

Deployment monolith with microservices challenges

Common Data Model: Events
Data model = events stored e.qg. in Kafka

Rebuild local state from events

Common Data Model: Events

Many dependencies
Event data model hard to change
Particularly hard: remove an attribute

l.e. model will keep growing

Centralized Data Model: Cure

Use separate local data models

Well-understood

Use specific data model for each interface between two

Mmicroservices.

Centralized Data Model: Cure

Specific Data Model
Order & Invoicing

Specific Data
Model

Delivery &

Invoicing

Data Model Inflation?

Independence vs.

one model

Trade-off -
No one single best - -

e - _

Synchronous Calls

"We do microservices the Netflix way!"

Cascading Synchronous Calls

Easy to understand
Similar to local programs

Synchronous Calls: Challenge
Latencies add up

...or calls have to be in parallel

Flaky service: Hard to compensate failures
Asynchronous resilience: Messages transferred later, inconsistencies

Performance issues due to network traffic

Entity Service

Entity Service

Can easily become a centralized data model

Entity Service

Synchronous calls

Entity Service

Every call goes through three services.

Performance

Latency

Entity Service
Failure can easily propagate.

Flaky services

\ i I m—

\

Common Database
Might be a centralized data model

Performance / latency not an issue

Shouldn't be flaky.

L

Entity Service: Cure
Each microservice should have its own data model

= Domain-driven Design's Bounded Context

Might share a database...
...but with separate schemas

Shared database might make services flaky.

5 grslsis

Bad Structure

"The system is flexible and maintainable -
because we use microservices!”

Bad Structure:
Deployment Monolith

B8 by e Sl

Sl

B sEraey

B acet EE o
7 4

Pt ond | ¢ |\VER install | BN
£ L%

E_—‘B :ipps .' _ EE Wstdre

§ Mg FEl1.I3 Di!.faﬂ

¥

E u'ﬁpaxp

Lo . A ' '. -_. ; ._'.'. : _'||
K AV
._ -;\.. _'r:_':' 'r- .-:E'ﬁ
- b . 5 aa; :
Eﬂ framawork, ',_;1 %n’aﬂulf

,a it
@ C::-n1p|nre A

BE e = & sl i sl

Bad Structure:
Microservices

5 kg 8 asmelr

e e

C=ond, | 1|V nstan\ [ER
R N

.- EE‘ 313'|15 -. EE wstore
T8 i [y e ¥
oA RN

9 MigraleData | (L

¥

ﬁ&mp{*ﬁ

g
A
e

. I.II.- ¥ .h':,..lt- Lt
/" i framawgrk)"

il j
e e

e SR -"9'?—.:-..'
e L g

Ay Compiere ™.

itz ey g wlflge B [ngres efte

If you want to fix the structure,

If you want to fix the structure,
microservices
won't help.

If you want to fix the structure,
fix the structure.

Organization

"Architects will decide.
The teams are just not up to the challenge. ®"

Organization: Challenge

Microservices enable

independent teams
...independent technologies

...independent parts of the domain

Centralized decisions = no independent teams

Reduces the benefit of microservices

Organization: Cure
Leap of faith:

Empower teams

If you actually trust people, they behave differently.
Dev will work different if code goes to prod and not QA...

The problem is not microservices.

The problem is not microservices.
The problem is the right trade-off.

See paper for more challenges
or https://speakerdeck.com/ewolff/why-
microservices-fail

11 demos for hands-on microservices:
https://ewolff.com/microservices-demos.html

Send email to
microservices-dortmund2019@ewolff.com

Slides

+ Microservices Primer DE / EN

+ Microservices Recipes DE / EN

+ Sample Microservices Book DE / EN

+ Sample Practical Microservices DE/EN
+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda
& Microservices

