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Can I build my own chatbot?



Large Language Model
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Large Language Model

•

•

•

175 billion parameters (GPT3)

Training: Estimated a hypothetical cost of around $4.6 million US dollars

355 years to train GPT-3 on a single GPU in 2020

https://en.wikipedia.org/wiki/GPU
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A few moments later…
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General-purpose language 

understanding
•

•

•

•

•

Does a LLM really understand?

LLMs generate answers by guessing it word by word

Answers contain well-written sentences

But they were constructed from single words, which were chosen by �inding 

the statistically most-�itting word

The LLM does not understand, why one word follows another



It's even more complicated



https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


https://platform.openai.com/tokenizer
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https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


General-purpose language 

understanding
•

•

•

•

LLMs do not generate words, but tokens

1 token ~ 4 characters 

                   ~ 3/4 of a word

The LLM does not even guess a whole word

Again less understanding, of why a certain sentence was generated
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Context window

•

•

•

•

•

LLMs have a limited context window size

The context is all of the given input

e.g. GPT3.5-turbo, LLama2 have a maximum context size of 4096 tokens

It is called "context window" because it will only use the last 4096 tokens of 

the given input

Overhead is cut at the beginning



Large Language Models. They are everywhere. 

They get some things amazingly right and other 

things very interestingly wrong.

Marina Danilevsky 

Senior Research Scientist, IBM Research 

"

"



Powerful as LLMs are, they suffer from several drawbacks

1.

2.

3.

4.

5.

"Frozen in time" and lack up-to-date information

Lack of domain-speci�ic knowledge

"Black boxes"- behavior

Costly to produce

"Hallucination"



Powerful as LLMs are, they suffer from several drawbacks

1.

2.

3.

4.

5.

"Frozen in time" and lack up-to-date information

Lack of domain-speci�ic knowledge

"Black boxes"- behavior

Costly to produce

"Hallucination"

✔

✔

✔

✔



How many moons does Jupiter have

Jupiter, the largest planet in our solar system, has at least 79 

known moons. These moons vary considerably in size and 

properties. The four largest moons of Jupiter, known as the 

Galilean moons, are Io, Europa, Ganymede and Callisto. These 

moons were discovered by Galileo Galilei in 1610 and are still some 

of the best-studied moons in the solar system.

 

OP



 

95
moons

Jupiter has

International Astronomical Union 

Minor Planet Centre (MPC)

22 February 2023



Hallucination

• In more complex technical questions, sometimes LLMs not only can't give a 

good answer but may also come up with a convincing-sounding but 

ultimately wrong response.
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Hallucination

•

•

In more complex technical questions, sometimes LLMs not only can't give a 

good answer but may also come up with a convincing-sounding but 

ultimately wrong response.

We can not trace which parameters / data caused the LLM to give the 

wrong answer 

 

→ Provide your own data with sources to the LLM 
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Retrieval Augmented Generation

• Retrieval Augmented Generation (RAG) is a technique that involves fetching 

up-to-date or context-speci�ic data from an external database and making 

it available to a Large Language Model during the generation process.
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Retrieval Augmented Generation

• By storing proprietary business data or information about the world, you can 

have your application retrieve this data when generating a response. This 

helps reduce the likelihood of generating inaccurate or unreliable information.
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Chunking

•

•

•

•

•

•

Load complete dataset from a datasource:

website

database

documents

Divide data into chunks with a chosen maximum length

For each chunk always remember the source (�ilepath, URL, paragraph and 

line)



https://www.innoq.com/en/articles/2023/10/java-21/

https://www.innoq.com/en/articles/2023/10/java-21/
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Chunk

text source



Chunk
The time has �inally come, 

on September 19th, JDK 

21, the newest long-term 

support (LTS) release 

after JDK 17, has come 

forth into the light of the…

innoq.com/en/articles/

2023/10/java-21/

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
https://www.innoq.com/en/articles/2023/10/java-21/
https://www.innoq.com/en/articles/2023/10/java-21/
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How to provide the chunks 

to our LLM?
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How to decide which chunks

are the ones to use?
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Embedding
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Vector representation

•

•

•

•

Includes a representation of the given context

It is not required to understand the elements of the vector representation

Used to guess a single token

And to make chunks comparable

 



https://www.innoq.com/en/articles/2023/10/java-21/

[0.1823313375201503, 0.16225175989, 

0.8865212883473177, …]

[0.83278322, 0.923893278, 

0.127387283, …]

[0.6748728378, 0.4728378283, 

0.3941673, …]

[0.192301503, 0.4578989023, 

0.328903302, …]

https://www.innoq.com/en/articles/2023/10/java-21/


 

What is a legacy system?

[…] is a typical characteristic of a legacy system

legacy software is […]

modernizing legacy software […]

the software system has aged […]
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What is a legacy system?

[…] is a typical characteristic of a legacy system

legacy software is […]

the software system has aged […]



Indexing



Vector Database

•

•

•

•

Store the vector representations

Optimized index for vector distance

Query for a vector

The database will return the N approximate nearest neighbours

 



 

vector representation chunk 

 

The time has �inally come, on September 19th, JDK 21, the newest long-term support (LTS) release 

after JDK 17, has come forth into the light of the world. This also means that the features and 

changes from JDK 18, JDK 19 and JDK 20 will now be increasingly incorporated into our applications.

 

 

 

 

But wait a minute, why is there another LTS release after just two years? Wasn’t the plan every 

three years? Yes, that was the plan until Oracle proposed along with the release of JDK 17 to adopt 

a two year cadence.
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https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
https://openjdk.org/projects/jdk/18/
https://openjdk.org/projects/jdk/19/
https://openjdk.org/projects/jdk/20/
https://blogs.oracle.com/java/post/moving-the-jdk-to-a-two-year-lts-cadence
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Index

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
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Bringing all parts together
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Results

•

•

Implementing RAG can result in a signi�icant improvement in the 

performance and accuracy of your AI application.

By basing an LLM on a set of external, veri�iable facts, the model has fewer 

opportunities to incorporate information into its parameters. This reduces 

the likelihood of an LLM revealing sensitive data.



Additional bene�its of RAG

•

•

•

•

•

The LLM only uses information from your domain

For a given question, one can test if the application chooses the expected 

chunks from the domain data

For expected chunks, one can test if the generated response is using the 

chunks

Combine both to test if a given response is answering the question by using 

domain data

This can be used for model testing and model evaluation



We still need to understand how to deal with this part

Embedding
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Documents may be large and 

complex
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~ 3500 pages (information, articles, transcripts)

12000 chunks

2 hours of embedding time



Example

•

•

•

• innoq.com website

~ 3500 pages (information, articles, transcripts)

12000 chunks

2 hours of embedding time

This was not large or complex data
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alpaca-native-7B

Based on Metas Llama2 model



Local Embedding Model

•

•

alpaca-native-7B

Based on Metas Llama2 model

20 hours of embedding time
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NVIDIA A2000 (12Gb GPU memory)

45 second inference



Local Generative Model

•

•

Llama2-7B-chat, Llama2-13B-chat

NVIDIA A2000 (12Gb GPU memory)

45 second inference

after optimization 30 second inference

small models

inacceptable to be used 

in production



Self-hosted LLMs
(in the cloud)





LLM Cloud Services

•

•

Deploy your own LLM

Example from Azure Machine Learning Studio for llama2-7b-chat

$/hour

requirements

most performant 

VM



LLM Cloud Services

•

•

•

$7.65/hr = $5691.60/month
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•

•

•

$7.65/hr = $5691.60/month

Cost for the smallest Llama2 with the lowest performing VM on Azure

~ 3s inference 

 

On AWS Sagemaker:

~ $36/day = $1080/month 

~ 10s inference
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LLM Cloud Services

•

•

•

•

•

Huge differences in pricing

Examples only for the small models

There are also 13B and 70B versions of llama2

llama2-13b-chat: $15/hr = $11160/month

llama2-70b-chat: $40.9/hr = $30429.6/month

llama2-13b-chat llama2-70b-chat

Azure pricings



LLM model sizes

•

•

•

Bigger LLMs provide higher accuracy

And thus less hallucination

As a trade-off, they are slower than smaller models



RAG
TO THE RESCUE
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Reduce cost with RAG

•

•

•

•

Using RAG the answer is only generated from given chunks

This removes the hallucination from LLMs

Smaller models can be used without hallucination

This also accelerates the inference
fact-based



Reduce cost with RAG

• Llama2-7b-chat and Llama2-13b-chat are suitable for basic use-cases



Data Protection





Azure

•

•

•

•

•

•

Azure Machine Learning Studio:

Model Catalog is still a "Preview", thus it can not guarantee that it 

follows the Azure DPA (last check October 25th 2023)  

 

Azure OpenAI:

Run your own ChatGPT  deployment

Data is not shared with any service of OpenAI

Also still a preview feature, but may be the most promising model once it 

is fully established

https://docs.aws.amazon.com/sagemaker/latest/dg/data-protection.html

https://docs.aws.amazon.com/sagemaker/latest/dg/data-protection.html


Amazon Web Services

•

•

•

AWS Sagemaker:

AWS seems to not use prompts received from users

AWS Bedrock: 

https://docs.aws.amazon.com/bedrock/latest/userguide/data-protection.html



Google Cloud Platform
•

•

Google Cloud Platform: 

 

 

 

 

Google Vertex AI: 

 

  

https://services.google.com/�h/�iles/misc/genai_privacy_google_cloud_202308.pdf



Always check the  

data protection for each  

new service
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OpenAI Business API



OpenAI Business API
•

•

•

Access the OpenAI API as a business

Protects your con�idential data

Data is not used by OpenAI 
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Example:

prompt 200 tokens 

 

1. embedding the query (prompt) 

2. Retrieving chunks, n=5 nearest neighbours, chunk_length=300 

3. Send prompt (200 tokens) and chunks (1500 tokens) to OpenAI API 

 

  



Token-based pricing

•

•

•

•

•

Number of tokens is based on:

length of the prompt

length of the answer 

 

Example:

prompt 200 tokens 

 

1. embedding the query (prompt) 

2. Retrieving chunks, n=5 nearest neighbours, chunk_length=300 

3. Send prompt (200 tokens) and chunks (1500 tokens) to OpenAI API 

4. Generate answer (e.g. max_answer_length=200) 

 



Token-based pricing
•

•

•

•

In this example 2100 tokens will be processed

200 embedding (ada v2)

1700 input

200 output 

 

→ $0.00212 per chat request → $1 ~ 500 chat requests 

 

  



Token-based pricing
•

•

•

•

In this example 2100 tokens will be processed

200 embedding (ada v2)

1700 input

200 output 

  
cheaper than

GPT4

Update from OpenAI DevDay

(November 7th)
GPT4-turbo



Measure, measure, measure!



chunk size
number of nearest 

neighbours (chunks)

maximum prompt length 

(tokens) 

maximum answer length 

(tokens) 

generative model

(GPT3.5-turbo, GPT4) frequency of

user requests

number of

users



Set a cost limit
increase on demand
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That can be a lot of tokens



Cost of Embedding Generation
•

•

•

Evaluate the cost of your embedding pipeline

Plan how frequently new chunks will be created  

Estimate the runtime of the pipeline



Our pipeline ran for 2 hours
with only a few chunks
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Distributed Computation
•

•

Using cloud resources you can distribute the pipeline

For example Ray.io
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Distributed Computation
•

•

•

Scale your pipeline with increasing amount of documents

Scale your chatbot with increasing amount of users

Run the pipeline and chatbot in your own data center

Only works if you

already have a

data center



Validation and Observability
•

•

•

•

•

•

•

•

Validate the quality of the responses during experimentation

Continuously validate the quality of the responses in production

For example Guardrails

 

Use tools for observability like LangFuse

Question-Answer-Pairs

Chunks

Number of tokens

Response time



Have fun building a chatbot 

for your domain



Thank you! Questions?

Marco Steinke

marco.steinke@innoq.com

www.innoq.com

innoQ Deutschland GmbH

Krischerstr. 100

40789 Monheim

+49 2173 333660

Ohlauer Str. 43

10999 Berlin

Ludwigstr. 180E

63067 Offenbach

Kreuzstr. 16

80331 München

Wendenstr. 130

20537 Hamburg

Königstorgraben 11

90402 Nürnberg


