
Faktenbasierte

LLM-Chatbots

�ür Deine

Domäne

TECHNOLOGY LUNCH / 10.01.2024

MARCO STEINKE

CONSULTANT

2022

Can I build my own chatbot?

Large Language Model

Large Language Model

Large Language Model

•

•

•

175 billion parameters (GPT3)

Training: Estimated a hypothetical cost of around $4.6 million US dollars

355 years to train GPT-3 on a single GPU in 2020

https://en.wikipedia.org/wiki/GPU

Large Language Model

Large Language Model

• general-purpose language understanding and generation

Massive

amount

of data

Language

Model

Learn billions

of parameters

Training

Large Language Model

• general-purpose language understanding and generation

Language

Model
 Response

Generate

response

User
Prompt

Large Language Model

• general-purpose language understanding and generation

Prompt

Language

Model

Response

Prompt

Language

Model

Response

guess

Prompt

Language

Model

Response
guess

Response

Prompt

Language

Model

Response
guess

Response

Prompt

Language

Model

Response
guess

Response

A few moments later…

Prompt

Language

Model

Response
guess

Response

Prompt

Language

Model

Response

General-purpose language

understanding

General-purpose language

understanding
• Does a LLM really understand?

General-purpose language

understanding
•

•

Does a LLM really understand?

LLMs generate answers by guessing it word by word

General-purpose language

understanding
•

•

•

Does a LLM really understand?

LLMs generate answers by guessing it word by word

Answers contain well-written sentences

General-purpose language

understanding
•

•

•

•

Does a LLM really understand?

LLMs generate answers by guessing it word by word

Answers contain well-written sentences

But they were constructed from single words, which were chosen by �inding

the statistically most-�itting word

General-purpose language

understanding
•

•

•

•

•

Does a LLM really understand?

LLMs generate answers by guessing it word by word

Answers contain well-written sentences

But they were constructed from single words, which were chosen by �inding

the statistically most-�itting word

The LLM does not understand, why one word follows another

It's even more complicated

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

General-purpose language

understanding
•

•

•

•

LLMs do not generate words, but tokens

1 token ~ 4 characters

 ~ 3/4 of a word

The LLM does not even guess a whole word

Again less understanding, of why a certain sentence was generated

Context window

• LLMs have a limited context window size

Context window

•

•

LLMs have a limited context window size

The context is all of the given input

Context window

•

•

•

LLMs have a limited context window size

The context is all of the given input

e.g. GPT3.5-turbo, LLama2 have a maximum context size of 4096 tokens

Context window

•

•

•

•

•

LLMs have a limited context window size

The context is all of the given input

e.g. GPT3.5-turbo, LLama2 have a maximum context size of 4096 tokens

It is called "context window" because it will only use the last 4096 tokens of

the given input

Overhead is cut at the beginning

Large Language Models. They are everywhere.

They get some things amazingly right and other

things very interestingly wrong.

Marina Danilevsky

Senior Research Scientist, IBM Research

"

"

Powerful as LLMs are, they suffer from several drawbacks

1.

2.

3.

4.

5.

"Frozen in time" and lack up-to-date information

Lack of domain-speci�ic knowledge

"Black boxes"- behavior

Costly to produce

"Hallucination"

Powerful as LLMs are, they suffer from several drawbacks

1.

2.

3.

4.

5.

"Frozen in time" and lack up-to-date information

Lack of domain-speci�ic knowledge

"Black boxes"- behavior

Costly to produce

"Hallucination"

✔

✔

✔

✔

How many moons does Jupiter have

Jupiter, the largest planet in our solar system, has at least 79

known moons. These moons vary considerably in size and

properties. The four largest moons of Jupiter, known as the

Galilean moons, are Io, Europa, Ganymede and Callisto. These

moons were discovered by Galileo Galilei in 1610 and are still some

of the best-studied moons in the solar system.

OP

95
moons

Jupiter has

International Astronomical Union

Minor Planet Centre (MPC)

22 February 2023

Hallucination

• In more complex technical questions, sometimes LLMs not only can't give a

good answer but may also come up with a convincing-sounding but

ultimately wrong response.

Hallucination

•

•

In more complex technical questions, sometimes LLMs not only can't give a

good answer but may also come up with a convincing-sounding but

ultimately wrong response.

We can not trace which parameters / data caused the LLM to give the

wrong answer

Hallucination

•

•

In more complex technical questions, sometimes LLMs not only can't give a

good answer but may also come up with a convincing-sounding but

ultimately wrong response.

We can not trace which parameters / data caused the LLM to give the

wrong answer

→ Provide your own data with sources to the LLM

RAG
Retrieval augmented generation

Retrieval Augmented Generation

• Retrieval Augmented Generation (RAG) is a technique that involves fetching

up-to-date or context-speci�ic data from an external database and making

it available to a Large Language Model during the generation process.

Embedding

Vector Database

Documents
Embeddings

+ Metadata

Retrieval Augmented Generation

• By storing proprietary business data or information about the world, you can

have your application retrieve this data when generating a response. This

helps reduce the likelihood of generating inaccurate or unreliable information.

Generate

response

User

Prompt

Vector Database

Response

returns relevant

context

performs a

“nearest neighbor”

search

Language

Model

Chunking

Chunking

•

•

•

• Load complete dataset from a datasource:

website

database

documents

Chunking

•

•

•

•

•

Load complete dataset from a datasource:

website

database

documents

Divide data into chunks with a chosen maximum length

Chunking

•

•

•

•

•

Load complete dataset from a datasource:

website

database

documents

Divide data into chunks with a chosen maximum length

Chunking

•

•

•

•

•

•

Load complete dataset from a datasource:

website

database

documents

Divide data into chunks with a chosen maximum length

For each chunk always remember the source (�ilepath, URL, paragraph and

line)

https://www.innoq.com/en/articles/2023/10/java-21/

https://www.innoq.com/en/articles/2023/10/java-21/

https://www.innoq.com/en/articles/2023/10/java-21/

https://www.innoq.com/en/articles/2023/10/java-21/

Chunk

text source

Chunk
The time has �inally come,

on September 19th, JDK

21, the newest long-term

support (LTS) release

after JDK 17, has come

forth into the light of the…

innoq.com/en/articles/

2023/10/java-21/

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
https://www.innoq.com/en/articles/2023/10/java-21/
https://www.innoq.com/en/articles/2023/10/java-21/

Chunks

How to provide the chunks

to our LLM?

ChunksDatabase

persist

Database

Language

Model

load

A few moments later…

Prompt

Language

Model

Chunks
guess

Best

Response

Ever

Prompt

Language

Model

Chunks
guess

Best

Response

Ever

we can also

return the

sources

Database

Language

Model

load

How to decide which chunks

are the ones to use?

Retrieval Augmented

Generation

Embedding

Embedding
Numerical representation of context

Embedding

Vector Database

Documents
Embeddings

+ Metadata

Embedding

Vector Database

Documents
Embeddings

+ Metadata

Vector representation

•

•

•

•

Includes a representation of the given context

It is not required to understand the elements of the vector representation

Used to guess a single token

And to make chunks comparable

https://www.innoq.com/en/articles/2023/10/java-21/

[0.1823313375201503, 0.16225175989,

0.8865212883473177, …]

[0.83278322, 0.923893278,

0.127387283, …]

[0.6748728378, 0.4728378283,

0.3941673, …]

[0.192301503, 0.4578989023,

0.328903302, …]

https://www.innoq.com/en/articles/2023/10/java-21/

What is a legacy system?

[…] is a typical characteristic of a legacy system

legacy software is […]

modernizing legacy software […]

the software system has aged […]

modernizing legacy software […]

What is a legacy system?

[…] is a typical characteristic of a legacy system

legacy software is […]

the software system has aged […]

Indexing

Vector Database

•

•

•

•

Store the vector representations

Optimized index for vector distance

Query for a vector

The database will return the N approximate nearest neighbours

vector representation chunk

The time has �inally come, on September 19th, JDK 21, the newest long-term support (LTS) release

after JDK 17, has come forth into the light of the world. This also means that the features and

changes from JDK 18, JDK 19 and JDK 20 will now be increasingly incorporated into our applications.

But wait a minute, why is there another LTS release after just two years? Wasn’t the plan every

three years? Yes, that was the plan until Oracle proposed along with the release of JDK 17 to adopt

a two year cadence.

[0.83278322, 0.923893278,

0.127387283, …]

… …

[0.1823313375201503, 0.16225175989,

0.8865212883473177, …]

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
https://openjdk.org/projects/jdk/18/
https://openjdk.org/projects/jdk/19/
https://openjdk.org/projects/jdk/20/
https://blogs.oracle.com/java/post/moving-the-jdk-to-a-two-year-lts-cadence

vector representation chunk

The time has �inally come, on September 19th, JDK 21, the newest long-term support (LTS) release

after JDK 17, has come forth into the light of the world. This also means that the features and

changes from JDK 18, JDK 19 and JDK 20 will now be increasingly incorporated into our applications.

But wait a minute, why is there another LTS release after just two years? Wasn’t the plan every

three years? Yes, that was the plan until Oracle proposed along with the release of JDK 17 to adopt

a two year cadence.

[0.83278322, 0.923893278,

0.127387283, …]

… …

[0.1823313375201503, 0.16225175989,

0.8865212883473177, …]

Index

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/17/
https://openjdk.org/projects/jdk/18/
https://openjdk.org/projects/jdk/19/
https://openjdk.org/projects/jdk/20/
https://blogs.oracle.com/java/post/moving-the-jdk-to-a-two-year-lts-cadence

Bringing all parts together

Language

Model

Chat UI

HTTP

API

prompt

Embedding

Model

HTTP

API

(2) embed prompt

Chat UI

Database

Embedding

Model

HTTP

API

(3) �ind n closest

chunks

Chat UI

Database

Embedding

Model

HTTP

API

Language

Model

(4) generate

response w
ith

original prom
pt

and chunks

Chat UI

Database

Embedding

Model

HTTP

API

Language

Model

best response ever

Chat UI

Database

HTTP

API

Language

Model

best response ever

Happy user

Embedding

Model

Chat UI

Database

HTTP

API

Language

Model

(2) embed prompt

(1) prompt

(3) �ind n closest

chunks
Embedding

Model

(4) generate

response w
ith

original prom
pt

and chunks

Chat UI

Prompt

Language

Model

Chunks
guess

Best

Response

Ever

rem
em

ber

Generate

response

User

Prompt

Vector Database

Response

returns relevant

context

from datastore

performs a

“nearest neighbor”

search

Language

Model

rem
em

ber

Results

•

•

Implementing RAG can result in a signi�icant improvement in the

performance and accuracy of your AI application.

By basing an LLM on a set of external, veri�iable facts, the model has fewer

opportunities to incorporate information into its parameters. This reduces

the likelihood of an LLM revealing sensitive data.

Additional bene�its of RAG

•

•

•

•

•

The LLM only uses information from your domain

For a given question, one can test if the application chooses the expected

chunks from the domain data

For expected chunks, one can test if the generated response is using the

chunks

Combine both to test if a given response is answering the question by using

domain data

This can be used for model testing and model evaluation

We still need to understand how to deal with this part

Embedding

Vector Database

Documents
Embeddings

+ Metadata

Documents

 Chunking Embedding

 Database

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

Documents may be large and

complex

Example

•

•

•

• innoq.com website

~ 3500 pages (information, articles, transcripts)

12000 chunks

2 hours of embedding time

Example

•

•

•

• innoq.com website

~ 3500 pages (information, articles, transcripts)

12000 chunks

2 hours of embedding time

This was not large or complex data

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

OpenAI Business API

Local Embedding Model

•

•

alpaca-native-7B

Based on Metas Llama2 model

Local Embedding Model

•

•

alpaca-native-7B

Based on Metas Llama2 model

20 hours of embedding time

Local Generative Model

•

•

Llama2-7B-chat, Llama2-13B-chat

NVIDIA A2000 (12Gb GPU memory)

45 second inference

Local Generative Model

•

•

Llama2-7B-chat, Llama2-13B-chat

NVIDIA A2000 (12Gb GPU memory)

45 second inference

after optimization 30 second inference

small models

inacceptable to be used

in production

Self-hosted LLMs
(in the cloud)

LLM Cloud Services

•

•

Deploy your own LLM

Example from Azure Machine Learning Studio for llama2-7b-chat

$/hour

requirements

most performant

VM

LLM Cloud Services

•

•

•

$7.65/hr = $5691.60/month

Cost for the smallest Llama2 with the lowest performing VM on Azure

~ 3s inference

LLM Cloud Services

•

•

•

•

•

•

$7.65/hr = $5691.60/month

Cost for the smallest Llama2 with the lowest performing VM on Azure

~ 3s inference

On AWS Sagemaker:

~ $36/day = $1080/month

~ 10s inference

LLM Cloud Services

•

•

Huge differences in pricing

Examples only for the small models

LLM Cloud Services

•

•

•

•

•

Huge differences in pricing

Examples only for the small models

There are also 13B and 70B versions of llama2

llama2-13b-chat: $15/hr = $11160/month

llama2-70b-chat: $40.9/hr = $30429.6/month

llama2-13b-chat llama2-70b-chat

Azure pricings

LLM model sizes

•

•

•

Bigger LLMs provide higher accuracy

And thus less hallucination

As a trade-off, they are slower than smaller models

RAG
TO THE RESCUE

Reduce cost with RAG

• Using RAG the answer is only generated from given chunks

Reduce cost with RAG

•

•

Using RAG the answer is only generated from given chunks

This removes the hallucination from LLMs

fact-based

Reduce cost with RAG

•

•

•

•

Using RAG the answer is only generated from given chunks

This removes the hallucination from LLMs

Smaller models can be used without hallucination

This also accelerates the inference
fact-based

Reduce cost with RAG

• Llama2-7b-chat and Llama2-13b-chat are suitable for basic use-cases

Data Protection

Azure

•

•

•

•

•

•

Azure Machine Learning Studio:

Model Catalog is still a "Preview", thus it can not guarantee that it

follows the Azure DPA (last check October 25th 2023)

Azure OpenAI:

Run your own ChatGPT deployment

Data is not shared with any service of OpenAI

Also still a preview feature, but may be the most promising model once it

is fully established

https://docs.aws.amazon.com/sagemaker/latest/dg/data-protection.html

https://docs.aws.amazon.com/sagemaker/latest/dg/data-protection.html

Amazon Web Services

•

•

•

AWS Sagemaker:

AWS seems to not use prompts received from users

AWS Bedrock:

https://docs.aws.amazon.com/bedrock/latest/userguide/data-protection.html

Google Cloud Platform
•

•

Google Cloud Platform:

Google Vertex AI:

https://services.google.com/�h/�iles/misc/genai_privacy_google_cloud_202308.pdf

Always check the

data protection for each

new service

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

OpenAI Business API

 Embedding

Model
 Language

Model

OpenAI Business API

OpenAI Business API

OpenAI Business API
•

•

•

Access the OpenAI API as a business

Protects your con�idential data

Data is not used by OpenAI

OpenAI Business API
•

•

•

•

Access the OpenAI API as a business

Protects your con�idential data

Data is not used by OpenAI

Token-based pricing model

OpenAI Business API
•

•

•

•

Access the OpenAI API as a business

Protects your con�idential data

Data is not used by OpenAI

Token-based pricing model

Token-based pricing

•

•

• Number of tokens is based on:

length of the prompt

length of the answer

Token-based pricing

•

•

•

•

•

Number of tokens is based on:

length of the prompt

length of the answer

Example:

prompt 200 tokens

1. embedding the query (prompt)

Token-based pricing

•

•

•

•

•

Number of tokens is based on:

length of the prompt

length of the answer

Example:

prompt 200 tokens

1. embedding the query (prompt)

2. Retrieving chunks, n=5 nearest neighbours, chunk_length=300

Token-based pricing

•

•

•

•

•

Number of tokens is based on:

length of the prompt

length of the answer

Example:

prompt 200 tokens

1. embedding the query (prompt)

2. Retrieving chunks, n=5 nearest neighbours, chunk_length=300

3. Send prompt (200 tokens) and chunks (1500 tokens) to OpenAI API

Token-based pricing

•

•

•

•

•

Number of tokens is based on:

length of the prompt

length of the answer

Example:

prompt 200 tokens

1. embedding the query (prompt)

2. Retrieving chunks, n=5 nearest neighbours, chunk_length=300

3. Send prompt (200 tokens) and chunks (1500 tokens) to OpenAI API

4. Generate answer (e.g. max_answer_length=200)

Token-based pricing
•

•

•

•

In this example 2100 tokens will be processed

200 embedding (ada v2)

1700 input

200 output

→ $0.00212 per chat request → $1 ~ 500 chat requests

Token-based pricing
•

•

•

•

In this example 2100 tokens will be processed

200 embedding (ada v2)

1700 input

200 output

cheaper than

GPT4

Update from OpenAI DevDay

(November 7th)
GPT4-turbo

Measure, measure, measure!

chunk size
number of nearest

neighbours (chunks)

maximum prompt length

(tokens)

maximum answer length

(tokens)

generative model

(GPT3.5-turbo, GPT4) frequency of

user requests

number of

users

Set a cost limit
increase on demand

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

OpenAI Business API

Database

Chat UI

 Embedding

Model

HTTP

API

 Language

Model

Documents

 Chunking

 Embedding

Chat Application
Embedding

Generation

OpenAI Business API

That can be a lot of tokens

Cost of Embedding Generation
•

•

•

Evaluate the cost of your embedding pipeline

Plan how frequently new chunks will be created

Estimate the runtime of the pipeline

Our pipeline ran for 2 hours
with only a few chunks

Distributed Computation
• Using cloud resources you can distribute the pipeline

Distributed Computation
•

•

Using cloud resources you can distribute the pipeline

For example Ray.io

Distributed Computation
• Scale your pipeline with increasing amount of documents

Distributed Computation
•

•

Scale your pipeline with increasing amount of documents

Scale your chatbot with increasing amount of users

Distributed Computation
•

•

Scale your pipeline with increasing amount of documents

Scale your chatbot with increasing amount of users

Distributed Computation
•

•

•

Scale your pipeline with increasing amount of documents

Scale your chatbot with increasing amount of users

Run the pipeline and chatbot in your own data center

Distributed Computation
•

•

•

Scale your pipeline with increasing amount of documents

Scale your chatbot with increasing amount of users

Run the pipeline and chatbot in your own data center

Only works if you

already have a

data center

Validation and Observability
•

•

•

•

•

•

•

•

Validate the quality of the responses during experimentation

Continuously validate the quality of the responses in production

For example Guardrails

Use tools for observability like LangFuse

Question-Answer-Pairs

Chunks

Number of tokens

Response time

Have fun building a chatbot

for your domain

Thank you! Questions?

Marco Steinke

marco.steinke@innoq.com

www.innoq.com

innoQ Deutschland GmbH

Krischerstr. 100

40789 Monheim

+49 2173 333660

Ohlauer Str. 43

10999 Berlin

Ludwigstr. 180E

63067 Offenbach

Kreuzstr. 16

80331 München

Wendenstr. 130

20537 Hamburg

Königstorgraben 11

90402 Nürnberg

