

# Numeric Programming with Spire

Lars Hupel Krakow Scala User Group 2019-02-21





# Numeric Programming with Cats, Algebra & Spire

Lars Hupel Krakow Scala User Group 2019-02-21



# What is Spire?

**66** Spire is a numeric library for Scala which is intended to be generic, fast, and precise.

- **66** Spire is a numeric library for Scala which is intended to be generic, fast, and precise.
  - one of the "oldest" Typelevel libraries
  - initial work by Eiríkr Åsheim & Tom Switzer
  - 60 contributors
  - started out in 2011 as a SIP for improving numerics

### **Generic Numeric Programming** Through Specialized Type Classes

Scala Workshop
2012

Erik Osheim

Azavea eosheim@azavea.com

#### Abstract

We describe an ongoing effort to build a system of type classes that support fast, accurate, flexible and generic numeric programming in Scala. This work combines Scala's support for user-directed type specialization with previous work on numeric type classes. In principle, these allow one to create generic numeric algorithms without sacrificing the speed of a direct implementation. In practice, these performance gains make very specific demands of both the language and the user.

This paper is a case study: we will explain the problems faced, discuss our strategies, and provide benchmarking results. We will also discuss ways in which Scala could be improved to more easily accommodate this kind of work. Finally, we will present a simple compiler plug-in that can he used to increase performance in many asses

[14], is a general-purpose numerics library by Erik Osheim and Tom Switzer. Started as a set of proposed improvements to Scala's built-in numerics, Spire has evolved into a standalone library supporting new number types, a full type class hierarchy, and other functions.

Much of the underlying specialization work from the R&D project has been ported over to Spire, but some parts are only available in the original project (e.g. the compiler plug-in). Spire's number types and design philosophy have informed the design of its type classes, whereas the earlier project stayed closer to the design found in scala.math.

#### BACKGROUND

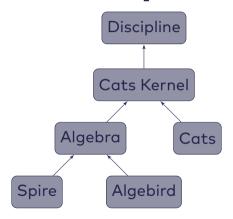
#### Motivating Examples

Programming is often an exercise in abstraction. Developers

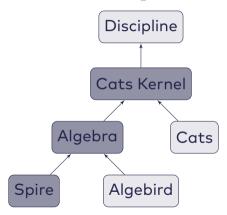
# What's in Spire?

- algebraic tower
- number types
- numeric algorithms
- pretty syntax
- optimization macros
- laws

# **Project relationship**



# **Project relationship**



# **Algebra**

66 Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

66 Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

Mathematicians study algebra to discover **common properties** of various concrete structures.

# **Algebra**

66 Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

#### Examples

- numbers, addition, multiplication
- matrices, vector spaces, linear algebra
- lattices, boolean algebra

66 Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

#### Examples

- numbers, addition, multiplication
- s, linear algebra



# **Algebra**

66 Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

#### Examples

- numbers, addition, multiplication
- n s, linear algebra





# **Semigroup**

```
trait Semigroup[A] {
  def append(x: A, y: A): A
}
```

# **Semigroup**

```
trait Semigroup[A] {
  def append(x: A, y: A): A
}

Law: Associativity
append(x, append(y, z)) == append(append(x, y), z)
```

## **Monoids**

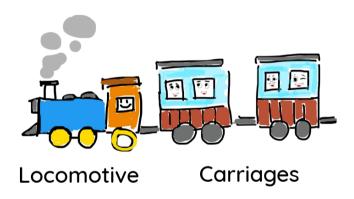
Law: Neutral element append(x, zero) == x

```
trait Monoid[A] extends Semigroup[A] {
  def append(x: A, y: A): A // Semigroup
  def zero: A
}
```

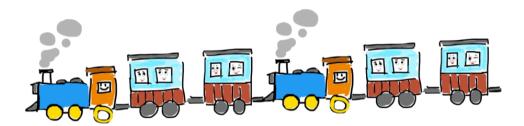
# **Monoidal structures**

**Lots** of things are monoids.

## **Trains are monoids**



## Trains are monoids



append(train, train)

## **Monoidal structures**

Lots of things are monoids.

- (Train, no train, couple)
- (Int, O, +)
- (List[T], Nil, concat)
- (Map[K, V], Map.empty, merge)



# Demo

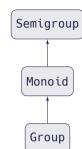
## **Monoidal structures**

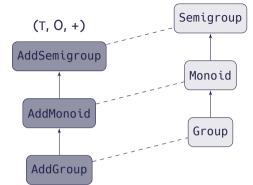
Lots of things are monoids.

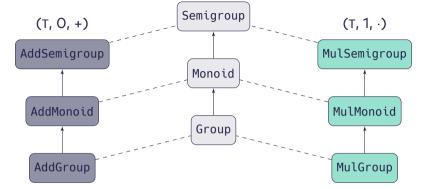
- (Train, no train, couple)
- (Int, O, +)
- (List[T], Nil, concat)
- (Map[K, V], Map.empty, merge)

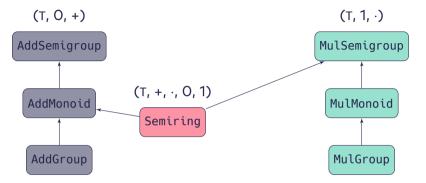
#### But some are not!

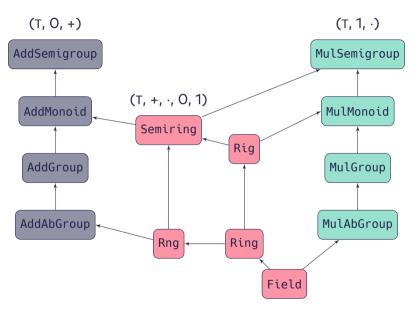
• (Float, O, +)











# Law Checking

```
// Float and Double fail these tests
checkAll("Int", RingLaws[Int].euclideanRing)
checkAll("Long", RingLaws[Long].euclideanRing)
checkAll("BigInt", RingLaws[BigInt].euclideanRing)
checkAll("Rational", RingLaws[Rational].field)
checkAll("Real", RingLaws[Real].field)
```



## **Numbers**

- machine floats are fast, but imprecise
- good tradeoff for many purposes, but not all!
- there is no "one size fits all" number type

## Rational numbers

$$\frac{n}{d} \in \mathbb{Q}$$
 where  $n, d \in \mathbb{Z}$ 

#### **Properties**

- closed under addition, multiplication, ...
- decidable comparison

## Rational numbers

$$\frac{n}{d} \in \mathbb{Q}$$
 where  $n, d \in \mathbb{Z}$ 

#### **Properties**

- closed under addition, multiplication, ...
- decidable comparison
- may grow large



## **Real numbers**

We can't represent **all** real numbers on a computer ...

## **Real numbers**

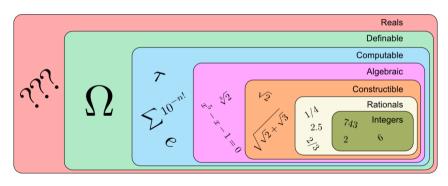
We can't represent all real numbers on a computer ...

... but we can get **arbitrarily close** 

## Real numbers

We can't represent all real numbers on a computer ...

... but we can get **arbitrarily close** 



# Real numbers, approximated

```
trait Real {
  def approximate(precision: Int): Rational
}
```

# Real numbers, approximated

```
trait Real { self =>
 def approximate(precision: Int): Rational
 def +(that: Real): Real = new Real {
   def approximate(precision: Int) = {
      val r1 = self.approximate(precision + 2)
      val r2 = that.approximate(precision + 2)
      r1 + r2
```

# Real numbers, approximated

```
trait Real {
  def approximate(precision: Int): Rational
object Real {
  def apply(f: Int => Rational) = // ...
  def fromRational(rat: Rational) =
    applv( => rat)
```

### Irrational numbers

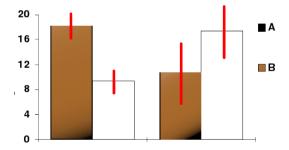
```
val pi: Real =
  Real(16) * atan(Real(Rational(1, 5))) -
    Real(4) * atan(Real(Rational(1, 239)))
```



# Demo

#### **Error bounds**

- often, inputs are not accurate
- e.g. measurements (temperature, work, time, ...)
- What to do with error bounds?



### Interval arithmetic

```
case class Interval[A](lower: A, upper: A)
```

#### Interval arithmetic

#### Interval arithmetic

Spire generalizes this even further:

- open/closed intervals
- bounded/unbounded intervals



# Demo

Spire is full of tools you didn't know you needed.

• SafeLong: like BigInt, but faster

- SafeLong: like BigInt, but faster
- Trilean: tri-state boolean value

- SafeLong: like BigInt, but faster
- Trilean: tri-state boolean value
- UByte, UShort, UInt, ULong: unsigned machine words

- SafeLong: like BigInt, but faster
- Trilean: tri-state boolean value
- UByte, UShort, UInt, ULong: unsigned machine words
- Natural: non-negative, arbitrary-sized integers

#### **Q&A**



#### Lars Hupel





#### innoQ Deutschland GmbH

Krischerstr. 100 40789 Monheim a. Rh. Germany +49 2173 3366-0 Ohlauer Str. 43 10999 Berlin Germany Ludwigstr. 180 E 63067 Offenbach Germany Kreuzstr. 16 80331 München Germany

#### innoQ Schweiz GmbH

Gewerbestr. 11 CH-6330 Cham Switzerland +41 41 743 01 11 Albulastr. 55 8048 Zürich Switzerland



Consultant innoQ Deutschland GmbH

Lars enjoys programming in a variety of languages, including Scala, Haskell, and Rust. He is known as a frequent conference speaker and one of the founders of the Typelevel initiative which is dedicated to providing principled, type-driven Scala libraries.

## **Image sources**

- Rubik's Cube: https://en.wikipedia.org/wiki/File:Rubik%27s\_Cube\_variants.jpg, Hellbus
- Knots: https://en.wikipedia.org/wiki/File:Tabela\_de\_n%C3%B3s\_matem%C3%A1ticos\_01,\_crop.jpg, Rodrigo.Argenton
- Intervals: https://commons.wikimedia.org/wiki/File:Confidenceinterval.png, Audrius Meskauskas
- Number venn diagram: http://www.science4all.org/article/numbers-and-constructibility/, Lê Nguyên Hoang
- Lavaux: https://en.wikipedia.org/wiki/File:Lake\_Geneva\_with\_Vineyards\_in\_Lavaux.jpg,
   Severin.stalder
- Drawings: Yifan Xing