et J s
£ LA

Numeric
Programming
with Spire

Lars Hupel
Krakow Scala User Group
2019-02-21

INNOQ

”



N

-

0 A AR T 2
{ S AN C

Numeric
Programming
with Cats,
Algebra & Spire

Lars Hupel
Krakow Scala User Group
2019-02-21

INNOQ




What is Spire?

€€ Spire is a numeric library for Scala which is intended to be generic, S5/
fast, and precise.



What is Spire?

€€ Spire is a numeric library for Scala which is intended to be generic, S5/
fast, and precise.

® one of the "oldest” Typelevel libraries

e initial work by Eirikr Asheim & Tom Switzer

® 60 contributors

e started out in 2011 as a SIP for improving numerics



Generic Numeric Programming
Through Specialized Type Classes

o‘\é“OP

SCO\O ,Lo'\')—

Abstract

We describe an ongoing effort to build a system of type
classes that support fast, accurate, flexible and generic nu-
meric programming in Scala. This work combines Scala’s
support for user-directed type specialization with previous
work on numeric type classes. In principle, these allow one
to create generic numeric algorithms without sacrificing the
speed of a direct implementation. In practice, these perfor-
mance gains make very specific demands of both the lan-
guage and the user.

This paper is a case study: we will explain the problems
faced, discuss our strategies, and provide benchmarking re-
sults. We will also discuss ways in which Scala could be
improved to more easily accommodate this kind of work.
Finally, we will present a simple compiler plug-in that can

he nnecad tn Incrance NnarfArMmancae It MAany Facac

Erik Osheim

Azavea
eosheim@azavea.com

[14], is a general-purpose numerics library by Erik Osheim
and Tom Switzer. Started as a set of proposed improvements
to Scala’s built-in numerics, Spire has evolved into a stand-
alone library supporting new number types, a full type class
hierarchy, and other functions.

Much of the underlying specialization work from the
R&D project has been ported over to Spire, but some parts
are only available in the original project (e.g. the compiler
plug-in). Spire’s number types and design philosophy have
informed the design of its type classes, whereas the earlier
project stayed closer to the design found in scala.math.

2. BACKGROUND
2.1 Motivating Examples

Programming is often an exercise in abstraction. Developers



What's in Spire?

® algebraic tower

® number types

® numeric algorithms
® pretty syntax

® optimization macros

* [aws



Project relationship




Project relationship

Algebird




Algebra

€€ Algebra is the study of mathematical symbols and the rules for ma- 33
nipulating these symbols.



Algebra

€€ Algebra is the study of mathematical symbols and the rules for ma- 33
nipulating these symbols.

Mathematicians study algebra to discover common properties of various
concrete structures.



Algebra

€€ Algebra is the study of mathematical symbols and the rules for ma- 33
nipulating these symbols.

®* numbers, addition, multiplication
®* matrices, vector spaces, linear algebra

® |attices, boolean algebra



Algebra

€€ Algebra is the study of mathematical symbols and the rules for ma- 33
nipulating these symbols.




Algebra

€€ Algebra is the study of mathematical symbols and the rules for ma- 33
nipulating these symbols.

°* nymbe tiplication

k, linear algebra

ge




Semigroup

trait Semigroup[A] {
def append(x: A, y: A): A
}



Semigroup

trait Semigroup[A] {
def append(x: A, y: A): A
}

Law: Associativity
append(x, append(y, z)) == append(append(x, y), z)



Monoids

trait Monoid[A] extends Semigroup[A] {
def append(x: A, y: A): A // Semigroup
def zero: A

Law: Neutral element
append(x, zero) ==



Monoidal structures

Lots of things are monoids.



Trains are monoids

Locomotive Carriages



Trains are monoids

append(train, train)



Monoidal structures

Lots of things are monoids.

® (Train, no train, couple)

e (Int, O, +)

® (List[T], Nil, concat)

® (Map[K, VI, Map.empty, merge)






Monoidal structures

Lots of things are monoids.

® (Train, no train, couple)

e (Int, O, +)

® (List[T], Nil, concat)

® (Map[K, VI, Map.empty, merge)

But some are not!
® (Float, O, +)



Semigroup
Monoid
Group




Semigroup
_|Monoid
B Group




Semigroup

Monoid

MulMonoid
B Group R

(Tl 11 )

MulSemigroup

i MulGroup



(1,0, +) T1,9)

MulSemigroup

(Tl +, ol 1) .
MulMonoid
MulGroup







Law Checking

// Float and Double fail these tests

checkAll("Int", RingLaws[Int].euclideanRing)
checkAll("Long", RingLaws[Long].euclideanRing)
checkAll("BigInt", RingLaws[BigInt].euclideanRing)
checkAll("Rational", RingLaws[Rational].field)
checkAll("Real", RingLaws[Real].field)






Numbers

®* machine floats are fast, but imprecise
® good tradeoff for many purposes, but not all!

® there is no "one size fits all" number type



Rational numbers

ge(@ wheren,d € Z

Properties

® closed under addition, multiplication, ...

® decidable comparison



Rational numbers

ge(@ wheren,d € Z

Properties
® closed under addition, multiplication, ...
® decidable comparison
°* may grow large






Real numbers

We can't represent all real numbers on a computer ...



Real numbers

We can't represent all real numbers on a computer ...
... but we can get arbitrarily close



Real numbers

We can't represent all real numbers on a computer ...
... but we can get arbitrarily close

4 Reals N

Definable

Computable
Algebraic

. 7 o
8 L Constructible

as. e o z :
. N Rationals

A0 N
i . & > 747 Integers
\{‘ S‘\; X 2.5 o
= N 2.




Real numbers, approximated

trait Real {
def approximate(precision: Int): Rational

}



Real numbers, approximated

trait Real { self =>
def approximate(precision: Int): Rational

def +(that: Real): Real = new Real {
def approximate(precision: Int) = {
val r1 = self.approximate(precision + 2)
val r2 = that.approximate(precision + 2)
ri + r2



Real numbers, approximated

trait Real {
def approximate(precision: Int): Rational

}

object Real {
def apply(f: Int => Rational) = // ...

def fromRational(rat: Rational) =
apply(_ => rat)



Irrational numbers

val pi: Real =
Real(16) * atan(Real(Rational(1l, 5))) -
Real(4) * atan(Real(Rational(1l, 239)))






Error bounds

e often, inputs are not accurate

® e.g. measurements (temperature, work, time, ...)

* \What to do with error bounds?

20 -

16 o

12 4

HA

mB



Interval arithmetic

case class Interval[A](lower: A, upper: A)



Interval arithmetic

case class Interval[A](lower: A, upper: A) {
def +(that: Intervall[A]) =
Interval(this.lower + that.lower,
this.upper + that.upper)



Interval arithmetic

case class Interval[A](lower: A, upper: A) {
def +(that: Intervall[A]) =
Interval(this.lower + that.lower,
this.upper + that.upper)

s

Spire generalizes this even further:
® open/closed intervals
® bounded/unbounded intervals






What else?

Spire is full of tools you didn't know you needed.



What else?

Spire is full of tools you didn't know you needed.
® Safelong: like BigInt, but faster



What else?

Spire is full of tools you didn't know you needed.
® Safelong: like BigInt, but faster

® Trilean: tri-state boolean value



What else?

Spire is full of tools you didn't know you needed.
® Safelong: like BigInt, but faster
® Trilean: tri-state boolean value

® UByte, UShort, UInt, ULong: unsigned machine words



What else?

Spire is full of tools you didn't know you needed.
® Safelong: like BigInt, but faster

® Trilean: tri-state boolean value

UByte, UShort, UInt, ULong: unsigned machine words

Natural: non-negative, arbitrary-sized integers



Q& A

Lars Hupel

N lars.hupel@innog.com
W @larsr_h

innoQ Deutschland GmbH

Krischerstr. 100 Ohlauver Str. 43 Ludwigstr. 180 E
40789 Monheim a. Rh. 10999 Berlin 63067 Offenbach
Germany Germany Germany

+49 2173 3366-0

Kreuzstr. 16
80331 Munchen
Germany

INNOQ

www.innog.com

innoQ Schweiz GmbH

Gewerbestr. 11 Albulastr. 55
CH-6330 Cham 8048 Zurich
Switzerland Switzerland
+4141743 0111



LARS HUPEL

Consultant
innoQ Deutschland GmbH

Lars enjoys programming in a variety of lan-
guages, including Scala, Haskell, and Rust. He is
known as a frequent conference speaker and one
of the founders of the Typelevel initiative which
is dedicated to providing principled, type-driven
Scala libraries.




Image sources

® Rubik's Cube: https://en.wikipedia.org/wiki/File:Rubik%27s_Cube_variants.jpg, Hellbus

® Knots: https://en.wikipedia.org/wiki/File:Tabela_de_n%C3%B3s_matem%C3%Alticos_01, crop.jpg,
Rodrigo.Argenton

® |ntervals: https://commons.wikimedia.org/wiki/File:Confidenceinterval.png, Audrius Meskauskas

® Number venn diagram: http://www.sciencedall.org/article/numbers-and-constructibility/, Lé
Nguyén Hoang

® Lavaux: https://en.wikipedia.org/wiki/File:Lake_Geneva_with_Vineyards_in_Lavaux.jpg,
Severin.stalder

® Drawings: Yifan Xing


https://en.wikipedia.org/wiki/File:Rubik%27s_Cube_variants.jpg
https://en.wikipedia.org/wiki/File:Tabela_de_n%C3%B3s_matem%C3%A1ticos_01,_crop.jpg
https://commons.wikimedia.org/wiki/File:Confidenceinterval.png
http://www.science4all.org/article/numbers-and-constructibility/
https://en.wikipedia.org/wiki/File:Lake_Geneva_with_Vineyards_in_Lavaux.jpg

