
Microservices zur
Architekturmodernisierung

Michael Vitz
Alexander Heusingfeld

Alexander Heusingfeld

alexander.heusingfeld@innoq.com

Senior Consultant @ innoQ

@goldstift

Michael Vitz
Consultant @ innoQ

michael.vitz@innoq.com

@michaelvitz

Typical Scenario?!

A monolith contains
numerous things inside
of a single system …

Various Domains

User interface 
Business logic 
Persistence

… as well as a lot of
modules, components,
frameworks and libraries.

With all these layers
in one place, a
monolith tends to
grow.

Goal

Reality

Why?

Typical Reaction?

Code Improvements

Alternatives?

Focus on Technology
Business

 Value

Thesis:
Improvement 

is more than Refactoringof single classes

of Systems

Architecture Improvement Method

an
aly
ze evaluate

improve

an
aly
ze evaluate

improve

• architecture

• code

• runtime

• organization

an
aly
ze evaluate

improve

determine „value“ of
problems / risks /

issues and their
improvements

an
aly
ze evaluate

improve
• define improvement strategy

• refactor

• re-architect

• re-organize

• remove debt

an
aly
ze evaluate

improve

Fundamentals

Practices

Practices

A smaller Codebase
makes things easier

introduce explicit
boundaries

Just use Microservices

> Everyone’s doing Microservices, so you should, too

> Everything will be faster with Microservices

> There are lots of interesting tools to play with, much
more interesting than the boring business domain

> With Microservices we’ll be more agile

Business
 Value?

Microservice Characteristics
small

each running in its own process

lightweight communicating mechanisms (often HTTP)

built around business capabilities

independently deployable

mininum of centralized management

may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html

Improvement Approaches
applied

Big Bang

Change on Copy

Integration?

Monolith Copy B

Module 2

Request Cascades

Monolith Copy A

Module 1

Module 3

Monolith Copy C

Module 4

avoid!

Customer Request

Resilience

> isolate Failure

> apply graceful degradation

> be responsive in case of
failure

Change via Extraction

Service 2

Request Cascades

Monolith

Module 1

Service 3 Service 4

avoid!

Customer Request

Service 5

Request Cascades Lower
Availability

Service

Service Discovery

Client

Service
Registry

2. discover service instances

3. call service instanceServiceService

1. register service ("myself")
 & heartbeat

Frontend Switch

Service 2

Frontend Switch

Monolith

Module 1

Service 3

Service 4

Customer Request

Service 5

Reverse Proxy

Strangulate Bad Parts

Steps for modularisation
• identify domains

• group teams by domain

• agree on macro
architecture

• focus delivery pipeline
on end-to-end features

• team decides migration
approach case-by-case

User Management

Payment
Product Management

Self-Contained System
(SCS)

An SCS contains its own  
user interface, specific  
business logic and  
separate data storage

Besides a web interface a self-
contained system can provide
an optional API.

The business logic can consist
of microservices to solve
domain specific problems.

The manageable domain
specific scope enables the
development, operation
and maintenance of an
SCS by a single team.

Team 1

Team 2 Team 3

Self-contained Systems 
should be integrated over their
web interfaces to minimize
coupling to other systems.

To further minimize coupling  
to other systems, synchronous
remote calls inside the
business logic should be
avoided.

Instead remote API calls should
be handled asynchronously to
reduce dependencies and
prevent error cascades.

http://scs-architecture.org/

more information on
self-contained systems

(SCS) can be found at

conclusion

Summary

> aim42 provides structure for software modernization

> SCSs are a reasonable approach to Microservices

> Not everyone who wants microservices is immediately
capable to establish them

> Don’t overwhelm people, change one thing at a time

Alexander Heusingfeld, @goldstift
alexander.heusingfeld@innoq.com
https://www.innoq.com/people/alexander-heusingfeld

Michael Vitz, @michaelvitz
michael.vitz@innoq.com
https://www.innoq.com/people/michael-vitz

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

info@innoq.com

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116

www.innoq.com

Offices in:
Berlin
Offenbach
München https://www.innoq.com/en/talks/

Thank you!
Questions?

Comments?

mailto:stefan.tilkov@innoq.com
http://www.innoq.com

