
Modernizing Systems
with Microservices, Hystrix and RxJava 

Holger Kraus, Arne Landwehr 
W-JAX, München, Nov 4, 2015



A typical System



The context



Current problems

> Maintenance is difficult 

> New features need a lot of time 

> Very unstable 

> Outdated technology 

> Doesn’t scale
+ frustrated 
developers :(



Current problems

> Maintenance is difficult 

> New features need a lot of time 

> Very unstable 

> Outdated technology 

> Doesn’t scale

Microservices 
FTW !
not yet …



Stabilize first!



External dependencies

here!

here!

and also here!



Cascading Failures

https://www.flickr.com/photos/benstassen/2991003141/



Stability patterns

> Timeouts 

> Circuit Breaker 

> Bulkhead 

… Fail Fast, Steady State, Handshaking, Test Harness, Decoupling Middleware



Timeout

https://www.flickr.com/photos/55293400@N07/15564061004



Bulkheads

https://www.flickr.com/photos/10413717@N08/6935206524



Ships

http://de.wikipedia.org/wiki/RMS_Titanic#/media/File:Titanic_Structure_de.svg

http://de.wikipedia.org/wiki/RMS_Titanic#/media/File:Titanic_Structure_de.svg


Bulkheads and IT

> Thread pools 

> Database connection pools 

> Instances 

> Server 

> Data center



Circuit Breaker

https://www.flickr.com/photos/leafbug/409950515/



Circuit Breaker

http://martinfowler.com/bliki/CircuitBreaker.html

http://martinfowler.com/bliki/CircuitBreaker.html


Hystrix

> Library from Netflix 

> Resilience Library 

> Command Pattern 

> Metrics 

> Dashboard



Use Cases

let’s pick this 
one!



Search Products

2. find external products

1. search products

3. find internal products

4. return internal + 
external products



Search Products



Call without Hystrix

cascading failures incoming!



Simple Command



Execute it!



Execute it asynchronously



Fallback



In case Merchant 2 is down

something is 
missing here



The stabilized system



Demo



And now?



Current Problems
> Maintenance is difficult 

> New features need a lot of time 

> Very unstable => enables further distribution 

> Outdated technology 

> Doesn’t scale



Microservices!

but how to get started ????



Architectural Decisions

https://speakerdeck.com/aheusingfeld/microservices-meet-real-world-projects-lessons-learned

https://speakerdeck.com/aheusingfeld/microservices-meet-real-world-projects-lessons-learned


Domain Architecture
which boxes do we need ?

let the monolith guide you!



Domain: Search



Macro Architecture

> Integration 

> Deployment  

> Formats 

> Protocols 

> Reduce Choices

what’s the same for all boxes ?

= API + UI 

= Docker 

= JSON 

= HTTP + AMQP 

= Java, Go

Monozon:

pick your 

 own!



Micro Architecture

Search 
    Service



Migration Path

?
pick one 
 [big bang, 
strangler, 
wonder]



Big Bang
a.k.a REVOLUTION

only call old monolith
meanwhile build new systems:



Big Bang

only call new shiny systems
delete this one!



Strangler
a.k.a EVOLUTION

your monolith a.k.a 
„Big Ball of Mud“



Strangler

give your monolith 
internal structure 
and define interfaces 

 … 

 if possible. 



Strangler

Extract your new 
service and redirect 
calls to it 



Strangler

Once unused strangle 
the old code 



Is it really so easy?



Time to connect boxes



Synchronous vs. Async/Parallel



Try this with futures
blocking!

blocking!



Time for RxJava
> Reactive Extensions for the JVM 

> Asynchronous streams 

> Elements of 

> Iterator pattern 

> Observable pattern 

> Functional programming



https://speakerdeck.com/benjchristensen/functional-reactive-programming-with-rxjava-javaone-2013

https://speakerdeck.com/benjchristensen/functional-reactive-programming-with-rxjava-javaone-2013


Everything is a stream!



RxJava in one picture

https://speakerdeck.com/benjchristensen/functional-reactive-programming-with-rxjava-javaone-2013

https://speakerdeck.com/benjchristensen/functional-reactive-programming-with-rxjava-javaone-2013


Creating Observables



Transforming with map

http://reactivex.io/RxJava/javadoc/rx/Observable.html

http://reactivex.io/RxJava/javadoc/rx/Observable.html


map in action



Combining with merge

http://reactivex.io/RxJava/javadoc/rx/Observable.html

http://reactivex.io/RxJava/javadoc/rx/Observable.html


merge in action



Combining streams with zip

http://reactivex.io/RxJava/javadoc/rx/Observable.html

http://reactivex.io/RxJava/javadoc/rx/Observable.html


zip in action 



Collecting details with flatMap

http://reactivex.io/RxJava/javadoc/rx/Observable.html

http://reactivex.io/RxJava/javadoc/rx/Observable.html


flatMap in action



Why not map?



Concurrency



Easier with Hystrix



Converting into a stream



Returning a result



Summary
> Use Hystrix to stabilize your system! 

> Use RxJava to increase the amount of async/
parallel processes in an easy way! 

> Introduce Microservices to get control over 
your system again! 

> Have fun :)



Our goal was to make 
you curious!



Find your own way!



Thank you!

innoq.com

https://www.innoq.com/de/talks/2015/11/wjax-2015-legacysysteme-microservices-hystrix-rxjava/

