
Web API
DOs and DON’Ts
Oliver Wolf
@owolf

Oliver Wolf
@owolf

www.innoQ.com
@innoQ

Disclaimer

‣Some of the discussions around REST and Web APIs are
merely a matter of taste and personal preference – I think
the topics I’m going to bring up are not, but I’m as biased as
everyone else.

‣ This is by no means a complete compilation and doesn’t
even claim to be one.

‣And, as always, your mileage may vary.

Don’t think in terms of
“endpoints”.

SOAP:
Facade with a single entry point

POST /soap/customer_service
<soap:envelope>
 <soap:body>
 <cs:create_customer>
 <cs:customer>
 <cs:name>John Doe</cs:name>
 ...

 </soap:body>
</soap:envelope>

The Web:
Lots of facades with lots of doors

Do you really want
the web to end
at your doorstep?

The web is based on relations and
interconnections.

Don’t let your API be like a black hole with one
way in and no way out

‣Use hypermedia controls to link your resource
representations together in ways that are meaningful for
your audience.

‣ If your resource representations contain references to
concepts and resources outside your domain, use hyperlinks
whenever possible. That’s what they’re meant for!

‣Make potential state transitions that apply to your resources
visible and navigable via hypermedia controls rather than
relying on out-of-band documentation.

Don’t just expose your
domain model.

Many real-world domain models
happen to be anemic.

If you just expose them as-is, you’ll inevitably
end up with bunch of CRUD resources

‣ This doesn’t necessarily have to be bad thing, but it often is.

‣A client that consumes a web API based on an anemic
domain model needs to have intimate knowledge about the
resources, their relations and the actions that can be
performed on them – tight coupling ensues.

‣ It’s almost always better to design APIs for intent rather than
slavishly following the domain model.

Designing for intent means that you need to
understand how clients will use the API

‣ That often requires a trade-off between flexibility vs. clarity
and conciseness.

‣Of course clients could request a list of the top 10 customers
based on revenue like so:
GET /customers?sortBy=grossMargin&order=desc&pageSize=10

‣But if that’s a frequent and meaningful use case for your
API, why not introduce a new resource that explicitly
conveys the intent:
GET /most_profitable_customers

Don’t abuse
GET and POST.

GET /blog/entries/42&action=delete

POST /blog/entries/42/delete

POST /customer/123
 <customer>
 <status>Preferred</status>
 </customer>

GET /api/create_customer?name=...

Safe? Idempotent? Semantics

GET ✓ ✓ retrieve resource representation

PUT ✗ ✓ modify resource state or
create resource identified by URL

POST ✗ ✗ create new resource, leave
assigning identifier to server

DELETE ✗ ✓ delete resource

The HTTP verbs are there for a reason –
they have complementary qualities.

You gain a lot by using HTTP as it’s intended to
be used.

‣Using HTTP verbs correctly unambiguously communicates
intent.

‣ The client knows excatly what to expect from the server:

‣Which actions can be safely retried in case of errors?

‣Which results can potentially be cached?

‣Which actions mutate server-side resource state?

‣Coupling between client and server is limited to the
HTTP contract, no out-of-band knowledge is required.

Don’t limit your choice
of error codes

to 200 and 500.

Life lesson:
Pretending everything’s good

when in fact it isn’t
is rarely a good idea.

HTTP/1.1 200 OK
Content-Type: application/json

{
 success:false,
 severity:100,
 error_message:"Everything’s FUBAR!"
}

Srsl
y?

There are more than 60 error codes for you to
choose from.
100 Client should continue with request
101 Server is switching protocols
102 Server has received and is processing the request
103 resume aborted PUT or POST requests
122 URI is longer than a maximum of 2083 characters

200 standard response for successful HTTP requests
201 request has been fulfilled; new resource created
202 request accepted, processing pending
203 request processed, information may be from another source
204 request processed, no content returned
205 request processed, no content returned, reset document view
206 partial resource return due to request header
207 XML, can contain multiple separate responses
208 results previously returned
226 request fulfilled, reponse is instance-manipulations

300 multiple options for the resource delivered
301 this and all future requests directed to the given URI
302 temporary response to request found via alternative URI
303 permanent response to request found via alternative URI
304 resource has not been modified since last requested
305 content located elsewhere, retrieve from there
306 subsequent requests should use the specified proxy
307 connect again to different URI as provided
308 resumable HTTP requests

400 request cannot be fulfilled due to bad syntax
401 authentication is possible but has failed
402 payment required, reserved for future use
403 server refuses to respond to request
404 requested resource could not be found
405 request method not supported by that resource
406 content not acceptable according to the Accept headers
407 client must first authenticate itself with the proxy
408 server timed out waiting for the request
409 request could not be processed because of conflict
410 resource is no longer available and will not be available
again
411 request did not specify the length of its content
412 server does not meet request preconditions

413 request is larger than the server is willing or able to
process
414 URI provided was too long for the server to process
415 server does not support media type
416 client has asked for unprovidable portion of the file
417 server cannot meet requirements of Expect request-header
field
418 I'm a teapot
420 Twitter rate limiting
422 request unable to be followed due to semantic errors
423 resource that is being accessed is locked
424 request failed due to failure of a previous request
426 client should switch to a different protocol
428 origin server requires the request to be conditional
429 user has sent too many requests in a given amount of time
431 server is unwilling to process the request
444 server returns no information and closes the connection
449 request should be retried after performing action
450 Windows Parental Controls blocking access to webpage
451 The server cannot reach the client's mailbox.
499 connection closed by client while HTTP server is processing

500 generic error message
501 server does not recognise method or lacks ability to
fulfill
502 server received an invalid response from upstream server
503 server is currently unavailable
504 gateway did not receive response from upstream server
505 server does not support the HTTP protocol version
506 content negotiation for the request results in a circular
reference
507 server is unable to store the representation
508 server detected an infinite loop while processing the
request
509 bandwidth limit exceeded
510 further extensions to the request are required
511 client needs to authenticate to gain network access
598 network read timeout behind the proxy
599 network connect timeout behind the proxy

Using the right error category is key to finding
the appropriate recovery strategy.

‣ Even if you’re not always sure about the subtleties of using
one code over another, at least make sure you get the error
category right:

‣ 2xx codes indicate successful completion

‣ 3xx codes are redirections

‣ 4xx codes indicate error caused by faulty behavior on the
client side – these are usually recoverable (just check the
request and try again)

‣ 5xx codes indicate server-side errors which may or may
not be recoverable

Don’t ignore caching.

Fact:
There will be caches involved,

no matter what.

Cl
ie

nt
 C

ac
he

Pr
ox

y
Ca

ch
e

Or
ig

in
 S

er
ve

r
Or

ig
in

 S
er

ve
r

Or
ig

in
 S

er
ve

r

Cl
ie

nt
Cl

ie
nt

Pr
ox

y
Ca

ch
e

The Internets

Cl
ie

nt

Pr
ox

y
Ca

ch
e

Re
ve

rs
e

Pr
ox

y
Ca

ch
e

These are the only
ones under your
control!

You can just ignore them, of course.

‣ If you don’t include any caching headers in your responses,
well-behaved caches will just do nothing.

‣ If you want to really make sure that no cache interferes with
communication in any way, use

‣But is this really what you want?

Cache-Control: no-store

They’re there to help!

(And they
come for free.)

Help them so they can help you!

‣ The least you can do is include either an Expires header
or a Cache-Control: max-age=... with a
reasonable freshness period for data that changes rarely
and/or at regular intervals.

‣Better yet, use validators:

‣ Include Last-Modfied in responses and honor
If-Modified-Since in requests.

‣ Include ETag in responses and honor If-None-Match
in requests.

ETags are powerful beasts!

Here’s the thing:
You decide!

The cool thing about ETags

‣ ETags are opaque to proxies, so they can be just about
anything:

‣hashes (not so cool if you need to create the
representation to calculate the hash and then throw it
away if it’s unchanged – no computation effort saved!)

‣ timestamps

‣ version numbers

‣ or anything else that allows your server logic to decide if
a representation can still be considered “fresh”,
which means you can be fuzzy here!

There are some caveats to keep in mind, though.

‣Be careful if your resources support multiple
representations. You might want to include a
Vary: Accept header.

‣ If a resource has both stable and highly volatile state, it can
be useful to split it into two separate (sub-)resources (which
should be hyperlinked, of course).

‣ Try to avoid excessive precision in query parameters as it
can lead to cache misses. Consider if
 GET /weather?location=52.497N13.428E
is really that much better than
 GET /weather?location=Berlin

Don’t see versioning
as a requisite.

As software engineers, we’ve
internalized that versioning is
essential to control change.

But a web API is fundamentally different from a
piece of installed software.

‣Web APIs are singletons – there’s only one instance at a
time.

‣Once a public-facing API is published and starts to gain
traction, it becomes increasingly difficult to change.

‣Clients are rarely under your control and it’s almost
impossible for you to enforce version updates.

Often, when you think
you’re changing a resource

what you’re actually changing
is just the representation.

‣ In many real-world cases /v1/customers and
/v2/customers still refer to the same “thing” (business
concept, domain object, whatever). Why should it be
identified by two distinct URLs?

‣ If the representation has changed, consider versioning the
media type instead of introducing version information into
the URL:

Content-Type: application/vnd.myapi.v2

Better yet, try to get by without any versioning
whatsoever.

‣ If you design your representations with extensibility in mind,
you’ll probably end up not needing versioning at all.

‣Most JSON implementations’ default mustIgnore behaviour
make that easier to do in JSON than in XML.

‣ If backwards compatibility is not possible or adds too much
of additional complexity, consider introducing an entirely
new API (as Facebook did with the Graph API, for instance).

Don’t mix up searching
and identifying.

Searching for resources and identifying
resources are fundamentally different things.

‣ It’s often good practice to provide more than one way to
search for things, based on clients’ intent:

/countries/germany/states/berlin/cities/berlin

/cities/berlin

/cities?name=berlin&state=berlin&country=germany

‣ Identity, however, should be unique:

/cities/3874

Try not to mix up these two concepts in your API.

‣ If possible, identify and refer to resources by their
canonical URL.

‣Use redirection:

GET /countries/germany/states/berlin/cities/berlin

HTTP/1.1 303
Location: http://api.example.org/cities/3874

Don’t obsess over URL
naming – but don’t

ignore it either.

Fact:
There is no such thing as a

RESTful URL.
All URLs are created equal –

they’re just identifiers after all.

Fact:
With proper use of hypermedia

controls, URLs are irrelevant
from a technical standpoint.

but

Which of the two logs will help you best with
tracking down the problem if things go wrong?

[16/Oct/2013:13:55:36] "GET /customers” 200
[16/Oct/2013:13:56:01] "GET /customer/42” 200
[16/Oct/2013:13:56:47] "PUT /customer/42” 200
[16/Oct/2013:13:56:58] "POST /customer/42/orders” 200
[16/Oct/2013:14:11:13] "POST /orders/4711/items” 200

[16/Oct/2013:13:55:36] "GET /xz66fgt5” 200
[16/Oct/2013:13:56:01] "GET /ahgt67ft/42” 200
[16/Oct/2013:13:56:47] "PUT /ahgt67ft/42” 200
[16/Oct/2013:13:56:58] "POST /ahgt67ft/42/jh77hg87” 200
[16/Oct/2013:14:11:13] "POST /bn87xcws/4711/lw33mn45” 200

or

Machines
don’t care.

Humans do.

Don’t use extensions as
the only means of

content negotiation.

Name extensions are a convenient way to select
media types for representations.

‣ They’re especially useful for testing in a browser (which
doesn’t provide an easy way to do content negotiation).

‣But they introduce multiple URL aliases for the same
resource that can lead to confusion and ambiguities when
used to link to the resource in hypermedia representations.

‣Prefer to use a canonical URL with “proper” content
negotiation as the primary reference:

/customer/42 (Canonical)
/customer/42.xml (Alias)
/customer/42.json (Alias)

Recap

Don’t think in terms of “endpoints”.

Don’t just expose your domain model.

Don’t abuse GET and POST.

Don’t limit your choice of error codes to 200 and 500.

Don’t ignore caching.

Don’t see versioning as a requisite.

Don’t mix up searching and identifying.

Don’t obsess over URL naming – but don’t ignore it either.

Don’t use extensions as the only means of content negotiation.

That’s all I have.
Feel free to ask me anything!

@owolf

