
Reactive Play and Scala
From one System to a System of Systems

Tobias Neef | tobias.neef@innoq.com

Properties of Reactive
Systems

Elastic

Responsive

Resilient

Message Driven

Responsive

User System

Elastic
> The system stays responsive under varying

workload

> … reacts to changes in the input rate by
increasing or decreasing the resources

> … no contention points or central
bottlenecks

Resilient

> The system stays responsive in the face of
failure

> Resilience is achieved by replication,
containment, isolation and delegation

Message Driven
> Reactive Systems rely on asynchronous

message-passing

> Establish a boundary between components

> Ensure loose coupling, isolation, location
transparency, and provides the means to
delegate errors as messages

Elastic

Responsive

Resilient

Message Driven

The story of a Play App
Wunderban

Wunderlist

kanbanfor1

App

Wunderlist API

Status DB

https://github.com/tobnee/wunderban

https://github.com/tobnee/wunderban

c-o-d-e

12 months later

Breaking the Monolith

https://www.innoq.com/blog/st/2013/10/on-monoliths/

https://www.innoq.com/blog/st/2013/10/on-monoliths/

App

Wunderlist API

Status DBBilling

Payment API

Billing DB WIP-Stats

Spark

HadoopTeams

„Large systems are composed of smaller ones and
therefore depend on the Reactive properties of their
constituents. “

— reactivemanifesto.org

http://reactivemanifesto.org

Revolution
vs. Evolution

The Play Stack

HTTP-Stack | Asset-Mgmt | Templates | DB-Integration | …

Play’s-App-Engine | Fault-Tolerance | Location-Transparent

Akka Actors

> Actors are message driven and async

> Support resilience

> Support scale up and scale out mechanisms
in one model

Step 1
—

Migrate Logic to Akka

A basic actor model

AppRoot

Lists Tasks

Web-Controller

Wunderlist DB

// actor protocol
case class GetTasks(id: Long)
case class TaskNotFound(id: Long)
case class TaskResult(id: Long,
 tasks: List[Task])

// controller
def tasks(id: Long) = Action.async {
 val wunderlist : ActorRef = ...
 (wunderlist ? GetTasks(id)).map {
 case TaskNotFound(id) => NotFound
 case TaskResult(id, tasks) => Ok
 }
}

// simplified actor
class ListsActor extends Actor {

 def receive = {
 case GetTasks(id) =>
 val tasks = lookupTasks(id)
 val result =
 if(tasks.isEmpty) TaskNotFound(id)
 else TaskResult(id, tasks)
 sender() ! result
 }
}

„Location Transparency is often mistaken for
'transparent distributed computing', while it is
actually the opposite“

— reactivemanifesto.org

http://reactivemanifesto.org

Step 2
—

Distribute App

Step 3
—

See the App
crashing ;)

Step 4
—

Make resilient

Apply stability patterns

> Bulkheads

> Circuit Breakers

> Handshaking

Building Bulkheads
with Actor Supervision

A wunderban actor model

AppRoot

Lists Tasks

Wunderlist

UpdateTaskUpdateList

DB

Risk

Web-Controller

Building Bulkheads
with Actor Dispatchers

Blocking - thread-pool-executor

Non-Blocking - fork-join-executor

Resource Management

AppRoot

Tasks

UpdateTask

DB

Building Circuit
Breakers with Akka

Open

Closed

System Isolation

WunderlistUpdateList
Timeout

WunderlistUpdateList
5xx

WunderlistUpdateList
Timeout

WunderlistUpdateList
Reject

stability patterns —>
resilience

Step 4
—

Scale up with Routers

WIP-Stats-Root

StatsBuilder

WIP-Stats-Root

StatsBuilder StatsBuilder StatsBuilder

Akka-Router

Further Scaling Options

> Scale out on a system level HTTP/LB

> Scale out using Akka (Remoting, Cluster)

Lessons Learned
> The path from a simple, monolithic Play App to a

distributed, reactive app often involves Akka
features

> Akka gives you powers to apply stability patters
with its standard tools

> Akka gives you ways to scale but its not a silver
bullet

Further Topics

> Reactive Streams / Akka Streams

> Akka Persistence

> Akka Cluster

Thank you!
Questions?
Comments?

Tobias Neef | tobnee
tobias.neef@innoq.com

Code Samples

val defaultDecider: Decider = {
 case _: ActorInitializationException ⇒ Stop
 case _: ActorKilledException ⇒ Stop
 case _: DeathPactException ⇒ Stop
 case _: Exception ⇒ Restart
}

val defaultStrategy: SupervisorStrategy = {
 OneForOneStrategy()(defaultDecider)
}

Resource Allocation
by Configuration

fix-thread-pool-dispatcher {
 type = Dispatcher
 executor = "thread-pool-executor"
 thread-pool-executor {
 core-pool-size-min = 2
 core-pool-size-max = 10
 }
}
akka.actor.deployment {
 /approot/tasks/udpdatetask {
 dispatcher = my-dispatcher
 }
}
val myActor = context.actorOf(Props[DbActor],
“udpdatetask")

val breaker =
 new CircuitBreaker(actorSystem.scheduler,
 maxFailures = config.maxFailures,
 callTimeout = config.callTimeout,
 resetTimeout = config.resetTimeout)
 .onOpen(notifyMeOnOpen())
 .onClose(notifyMeOnClose())
 .onHalfOpen(notifyMeOnHalfOpen())

def execute[T](call: Future[T]): Future[T] = {
 breaker.withCircuitBreaker(call)
}

akka.actor.deployment {
 /wipstats/statsbuilder {
 router = round-robin-pool
 nr-of-instances = 3
 }
}

val statsRouter = context.actorOf(
 FromConfig.props(Props[StatsBuilder]),
 "statsbuilder")

