Reactive Play and Scala

From one System to a System of Systems
Tobias Neef | tobias.neef@innog.com

Properties of Reactive
Systems

/ Responsive \

Elastic - > Resilient

AN -

Message Driven

Responsive

Elastic

> The system stays responsive under varying
workload

> .. reactsto changes in the input rate by
increasing or decreasing the resources

> ...N0 contention points or central
bottlenecks

Resilient

> The system stays responsive in the face of
failure

> Resilience is achieved by replication,
containment, isolation and delegation

Message Driven

> Reactive Systems rely on asynchronous
message-passing

> Establish a boundary between components

> Ensure loose coupling, isolation, location
transparency, and provides the means to

delegate errors as messages

Responsive

/’

A

T~

Elastic -

> Resilient

\

Message Driven

e

The story of a Play App
Wunderban

Wunderlist

kanbanfor1

things to do

‘next -doing

done

App Status DB

Wunderlist API

https://github.com/tobnee/wunderban

https://github.com/tobnee/wunderban

C-0-d-e

12 months later

Breaking the Monolith

https://www.innog.com/blog/st/2013/10/on-monoliths/

https://www.innoq.com/blog/st/2013/10/on-monoliths/

Billing

APP

Billing DB

Status DB

T~

WIP-Stats

Payment API/

Wunderlist AP

e

Teams

N Spark

AN

Hadoop

»Large systems are composed of smaller ones and
therefore depend on the Reactive properties of their
constituents. “

— reactivemanifesto.org

http://reactivemanifesto.org

Revolution
vs. Evolution

The Play Stack

)Py

HTTP-Stack | Asset-Mgmt | Templates | DB-Integration | ...

AR akka

Play’s-App-Engine | Fault-Tolerance | Location-Transparent

Akka Actors

> Actors are message driven and async

> Support resilience

> Support scale up and scale out mechanisms
in one model

Step 1

Migrate Logic to Akka

A basic actor model

Web-Controller AppRoot

/ ™~

Lists Tasks

Wunderlist DB

case class GetTasks(id: Long)
case class TaskNotFound(id: Long)
case class TaskResult(id: Long,
tasks: List[Task])

def (1d: Long) = Action.async {
val wunderlist : ActorRef = ...
(wunderlist ? GetTasks(id)).map {

case Tas
case Tas

KkNotFound(1d) => NotFound

KResult(1id, tasks) => 0Ok

class ListsActor extends Actor {

def = {
case GetTasks(id) =>
val tasks = lookupTasks(id)
val result =
1f(tasks.1isEmpty) TaskNotFound(id)
else TaskResult(1id, tasks)
sender() ! result

,Location Transparency is often mistaken for
‘transparent distributed computing', while it is
actually the opposite*

— reactivemanifesto.org

http://reactivemanifesto.org

Step 2

Distribute App

Step 3

See the App
crashing ;)

Step 4

Make resilient

Apply stability patterns

> Bulkheads
> Circuit Breakers

> Handshaking

Building Bulkheads
with Actor Supervision

A wunderban actor model

AS1Y

Web-Controller AppRoot
d N
Lists Tasks
UpdateList UpdateTask

v Wunderlist

DB

Building Bulkheads
with Actor Dispatchers

Resource Management

Non-Blocking - fork-join-executor

AppRoot

Tasks

Blocking - thread-pool-executor

UpdateTask

DB

Building Circuit
Breakers with Akka

System Isolation

Closed
Updatelist , Wunderlist
Timeout
Updatelist Wunderlist
DXX
Updatelist , Wunderlist
Timeout
Open
Upda’[eLIS’[..................................... s VVUﬂderliSt
Reject

stability patterns —»
resilience

Step 4

Scale up with Routers

WIP-Stats-Root

StatsBuilder

_

WIP-Stats-Root

Akka-Router

S

StatsBuilder

StatsBuilder

StatsBuilder

Further Scaling Options

> Scale out on a system level HTTP/LB

> Scale out using Akka (Remoting, Cluster)

Lessons Learned

> The path from a simple, monolithic Play App to a
distributed, reactive app often involves Akka
features

> Akka gives you powers to apply stability patters
with its standard tools

> Ak
bu

<a gives you ways to scale but its not a silver
|et

Further Topics

> Reactive Streams / Akka Streams
> Akka Persistence

> Akka Cluster

Thank you!
Questions?

Comments?

Tobias Neef | w tobnee
tobias.neef@innog.com

innoQ

Code Samples

val : Decider = {

case _: ActorlInitializationException = Stop
case _: ActorKilledException = Stop
case _: DeathPactException = Stop
case _: Exception = Restart
h
val . SupervisorStrategy = {

OneForOneStrategy()(defaultDecider)

Resource Allocation
by Configuration

fix-thread-pool-dispatcher {
type = Dispatcher
executor = "thread-pool-executor”
thread-pool-executor {
core-pool-size-min = 2
core-pool-size-max = 10
}

}
akka.actor.deployment {

/approot/tasks/udpdatetask {
dispatcher = my-dispatcher
¥

}
val myActor = context.actorOf(Props[DbActor],

“udpdatetask")

val -
new CircuitBreaker(actorSystem.scheduler

maxFailures = config.maxFailures
callTimeout = config.callTimeout
resetTimeout = config.resetTimeout)
.onOpen(notiftfyMeOnOpen())
.onClose(notifyMeOnClose())
.onHalfOpen(notifyMeOnHalfOpen())

def [T](call: Future[T]): Future[T] = {
breaker.withCircuitBreaker(call)

akka.actor.deployment {
/wipstats/statsbuilder {
router = round-robin-pool
nr-of-instances = 3

}
}

val statsRouter = context.actorOf(
FromConfig.props(Props[StatsBuilder]),
"statsbuilder")

