
1

I N N O Q T e c h n o l o g y L u n c h
2 0 2 1 / 0 9 / 0 8

Scaling Data

LUCAS DOHMEN
@moonbeamlabs

What is your goal?

2

Scaling
reads

Scaling
writes

Scaling
data

volume

Geographical
distribution

Increase
failure

resistance

3

Scaling data volume
“Boats” by Andy Hall on Unsplash

https://unsplash.com/photos/kQNIHv9fxlc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/distribute?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

How do we scale web applications?

4

Share nothing between application servers

Put behind a load balancer

Add servers

Load Balancer

A
pp

A
pp

A
pp

Database

A
pp

Share Nothing for Databases?

5

Possible & underused

Separate databases for separate data

• for different tenants

• for different countries

• for different use cases

• …

If we need to join data, we need to join in the app MySQLRedis

A
pp

Load Balancer

A
pp

A
pp

A
pp

6

But what if we can‘t do that manually?

Can the database do it for us?

Can it even scale automatically?

Maybe without us even noticing?

7

Sharding
=

Each node has only part of the data

Simple example: memcached

8

Cache (data may be lost)

Stores/retrieves a value for a key

More memcached nodes mean more memory is available

Sharding is done completely in the memchached-clients

memcached

9

client 2

client 1

client 3 Key: a34e ?
client 4

memcached 2

memcached 1

memcached 3

memcached n

…

Sharding by Key

10

memcached 1:
A-G

memcached 2:
H-L

memcached 3:
M-Z

Hashed! ⇒ Equal distribution to all shards!

Equally distributed sharding

11

memcached 2

memcached 1

memcached 3

client 2

client 1

client 3 hash("a34e") mod n

client 4

hash("a34e") mod n

memcached n

…

Changing n will cause trouble…

Consistent Hashing

12

Node A

Node B

Node C

Value 1

Value 2

Value 3

1 is stored in B
2 & 3 are stored in A

Consistent Hashing

13

Node A

Node B

Node C

Value 1

Value 2

Value 3

1 is stored in B
3 is stored in A
2 is stored in D

Node D

Consistent Hashing

14

Node A

Node B

Node C

Value 1

Value 2

Value 3

Only 1 is lost
And will be placed on C
next time

Node D

Sharding

15

Usable for scaling data volume

And a bit for reads and writes (since we have more machines)

But:

• what about really scaling reads and writes?

• what about geographical distribution?

• what about failure resistance?

16

Replication
=

Same data on multiple nodes

Single Leader

17

Failover

Read scaling

No write scaling

Leader

Follower

Sync or Async Replication?

18

Trade-off between consistency & speed

Sync: Every follower we add decreases performance

Async: If our leader dies and the replication is not done, we have lost
acknowledged data. Also: Consistency is at risk.

Examples

19

Redis

MySQL/MariaDB

PostgreSQL

MongoDB

Multi Leader

20

Failover

Read & write scaling
Leader

Leader

Always async replication

Write Conflicts

21

Two leaders can accept a conflicting write

We usually resolve them when reading

Do we have all information to resolve the conflict at read time?

Examples

22

CouchDB

(git)

Paxos

23

Some database vendors call their database “multi leader”

when they in fact are closer to single leader

these algorithms are mostly based on Paxos (or Raft)

In these systems, the nodes do leader elections

And you always write to the leader

This leads to consistent systems

Explaining Paxos definitely goes beyond what we can cover here

Leaderless

24

Failover

Read & write scaling

Examples

25

Riak

Cassandra

Back to our hash ring

26

Node A

Node B

Node C

Value 1

Value 5

Value 6

Value 4

Value 2

Value 3

Node D Client 1

Quorum

27

Clients write to n nodes at once

When more than w nodes acknowledged the write, the write is successful

w is the write quorum

When we read, we wait for the result of r nodes

r is the read quorum

28

A=1

A=1

A=1

A=1

A=1

n=5
w=3
r=3

A=2

A=2 A=2

Client 1

A=2

A=2

29

A=2

A=2

A=2

A=1

A=1

Client 1

👍

👍
👍

👍

n=5
w=3
r=3

30

A=2

A=2

A=2

A=1

A=1

A?

A?
A?

Client 2
n=5
w=3
r=3

A?

A?

31

A=2

A=2

A=2

A=1

A=1

A=1

A=1
A=2

Client 2
🤷 A=1? A=2?

n=5
w=3
r=3

32

Given W+R>N
Do we always receive the correct result?

33

A=2

A=2

A=2

A=1

A=1

w=3
r=3Client

When the node comes back up,
Is it restored with A=1 or A=2?

34

Availability
Photo by Ken Treloar on Unsplash

https://unsplash.com/@kentreloar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/wild-fire?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

35

A B

C D

36

A B

C D

Latency is only dis3nguishable from failure by a 3meout

You have two choices

37

A B

C D

Sorry,We‘re closed

Stop taking requests
Not available, but consistent
under partition

A B

C D

Continue taking requests
Available, but not consistent
under partition

a=2a=5

CP AP

38

A B

C D

Sorry,We‘re closed

Not available, but consistent
under partition

A B

C D

Available, but not consistent
under partition

a=2a=5

CP AP

~Single Leader, Paxos ~Leaderless, Multi Leader

What are your requirements?

39

40

https://leanpub.com/datenbanken

