NOQ Technology Lunch
21/09/08

.3 LUCAS DOHMEN

o, @moonbeamlabs

: : Scaling : Increase
Scaling Scaling data Geographical fqilure

reads writes distribution ,
volume resistance

(),
-
=
o,
>
O
i’
O
=
O)
=
O
O
U

"Boats" by"AfdYy &all on Unsplash

https://unsplash.com/photos/kQNIHv9fxlc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/distribute?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

How do we scale web applications?
4P

Share nothing between application servers

Put behind a load balancer '-°°d Balancer

- H H H H

Datq base

Share Nothing for Databases?
4P

Possible & underused

Separate databases for separate data |-°0d Balancer

e for different tenants
e for different countries
e for different use cases

If we need to join data, we need to join in the app e @

But what if we can’t do that manually?

Can the database do it for us?

Can it even scale automatically?

Maybe without us even noticing?

Simple example: memcached

Cache (data may be lost)
Stores/retrieves a value for a key
More memcached nodes mean more memory is available

Sharding is done completely in the memchached-clients

memcached

memcached 1

client 1

memcached 2

client 2

memcached 3

client 3 Key: a34e

?

client 4

memcached n

Sharding by Key

& Hashed! = Equal distribution to all shards!

memcached 1: memcached 2: memcached 3:

A-G H-L M-Z

10

Equally distributed sharding

memcached 1

client 1 hash("a34e") mod n
—

D memcached 2

client 2 /
/ memcached 3

client 3 hash("a34e") mod n

client 4

memcached n

Changing n will cause trouble...

11

Consistent Hashing

1is stored in B
2 & 3 are stored in A

12

Consistent Hashing

1is stored in B
3is stored in A
alve 1 2 is stored in D

13

Consistent Hashing

Only 1is lost
And will be placed on C
alve 1 next time

14

Sharding

Usable for scaling data volume

And a bit for reads and writes (since we have more machines)
But:

 what about really scaling reads and writes?

 what about geographical distribution?

e what about failure resistance?

15

Single Leader

Failover
Read scaling

No write scaling

17

Sync or Async Replication?

Trade-off between consistency & speed
Sync: Every follower we add decreases performance

Async: If our leader dies and the replication is not done, we have lost
acknowledged data. Also: Consistency is at risk.

C lient Leader Follower C lient Leader Follower

Werite(X)) Werite(X))

Wra—e_(xL) ok
/ (ok / ﬁ / Write(X)
ok ok
f_—' | ﬁ’ |
Qlie_n-l— Le_o\de_rj Fol lowe_r Ql;e_n-l— Leader Fol lowe_r]

—

18

Examples

Redis
MySQL/MariaDB
PostgreSQL

MongoDB

19

Multi Leader

Failover

Read & write scaling

Always async replication

20

Write Conflicts

Two leaders can accept a conflicting write

We usually resolve them when reading

Do we have all information to resolve the conflict at read time?

21

Examples

CouchDB

(git)

22

Paxos

Some database vendors call their database "multi leader”
when they in fact are closer to single leader
these algorithms are mostly based on Paxos (or Raft)
In these systems, the nodes do leader elections
And you always write to the leader
This leads to consistent systems

Explaining Paxos definitely goes beyond what we can cover here

23

Leaderless

Failover

Read & write scaling

24

Examples
Riak

Cassandra

25

Back to our hash ring

Node D Client 1

26

Quorum

Clients write to n nodes at once

When more than w nodes acknowledged the write, the write is successful
w is the write guorum
When we read, we wait for the result of r nodes

ris the read qguorum

27

Client 1

28

= =5

1

w w Un

Client 1

29

= =5

1

w w Un

A?
A?
A?
A?
A?

Client 2

30

= =5

1

W
W Ul

Client 2
W A=1? A=27?

31

= =5

1

w w Un

When the node comes back up,
Is it restored with A=1or A=2?

Client

33

Availability

Photo by Ken Tre

https://unsplash.com/@kentreloar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/wild-fire?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

35

00
0.0

Latency is only distinguishable from failure by a timeout

36

You have two choices

Stop taking requests Continue taking requests
Not available, but consistent Available, but not consistent
under partition under partition

CP

AP

37

AP

! !

Not available, but consistent Available, but not consistent
under partition under partition

~Single Leader, Paxos ~Leaderless, Multi Leader

38

What are your requirements?

Failure Geographical
Resistance Distribution

Big

Scaling Reads Scaling Writes Data Sets

39

https://leanpub.com/datenbanken

40

