
Microservices
with Clojure

Microservices Meetup Rhein-Main

Michael Vitz & Joy Clark

Who are we?

Michael Vitz
michael.vitz@innoq.com

@michaelvitz

Joy Clark
joy.clark@innoq.com

@iamjoyclark

https://www.innoq.com/people/michael-vitz
mailto:michael.vitz@innoq.com
https://twitter.com/michaelvitz
https://www.innoq.com/people/joy-clark
mailto:joy.clark@innoq.com
https://twitter.com/iamjoyclark

~80 people in Germany (Monheim, Berlin,
Offenbach, Munich)

~20 people in Switzerland (Zurich, Cham)

Who are you?

Microservices?
Various aspects!

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

“Do one thing and do it well!”

Easier to understand
$ man uniq

...

DESCRIPTION
 The uniq utility reads the specified input_file comparing adjacent lines, and
 writes a copy of each unique input line to the output_file.
...

Understanding a monolith...

$ man my-huge-monolith

<endless text>

Composability
ps -ef |
grep program-i-dont-like |
grep -v grep |
awk '{print $2}' |
kill

“Do one thing and do it well!”?Yes!

“One thing” - which?

“Organize around
business capabilities!”

Don’t build thinks like “frontend”,
“api” and “database access”

–
instead, build “fulfillment”

and “payment”.

“Organize around
business capabilities!”?Yes!

All of this could be done with
Libraries.

Would that be Microservices?

Code Abstractions
Function

(Class)

Library

Component

Service

Service
Communicates via network

Independently deployable

Technologically independent

Clear module boundaries

Microservices promise
very loose coupling

but

you have to handle
the complexity of

distributed systems!

This requires rules and
conventions across systems.

Good starting point:
http://12factor.net/

http://12factor.net/

Rules & conventions
Project setup is done more than once
 has to be easy

Deployment is done all the time
 must be automated

Many apps are configured and write logs
 should be simple for every app, common format,
Splunk or ELK

Rules & conventions
Many services are talking to each other
 standardize on protocols and data formats

The network is not reliable
 asynchronous programming and stability
patterns for decoupling and resilience

It’s easy to lose track of what’s actually happening
 gather metrics for monitoring

Given such rules,
how to play nice using Clojure?

Clojure Crash Course
(println "Hello Frankfurt!")

Lisp + JVM

Functional programming language

Simple programming model

Clojure Crash Course
(println "Hello Frankfurt!")

Lisp + JVM

Functional programming language

Simple programming model

Clojure Crash Course

{:name "Clojure"
 :features [:functional :jvm :parens]
 :creator "Rich Hickey"
 :stable-version {:number "1.8.0"
 :release "2016/01/19"}}

Clojure Crash Course
(defn main [args] (println "Hello World!"))

vs.

public static void main(String[] args) {
 System.out.println("Hello World!");
}

Clojure Crash Course
(+ 1 2 3)
> 6

(:city {:name "innoQ"
 :city "Offenbach"})
> "Offenbach"

(map inc [1 2 3])
> (2 3 4)

Example

contacts

simple-calendar

noti�cations

Project setup

derivative of by “Garuda Takeoff” Simon_sees (CC BY 2.0)

https://www.flickr.com/photos/39551170@N02/3722647772
https://www.flickr.com/photos/39551170@N02/
https://creativecommons.org/licenses/by/2.0/

Leiningen
Alternative to Maven

Describes Clojure project with generic data
structures

Maven repository compatibility

Offers plugin system

Leiningen
(defproject simple-calendar "0.1.0-SNAPSHOT"
 :description "simple calendar app"
 :url "https://github.com/innoq/simple-calendar"
 :dependencies [[org.clojure/clojure "1.8.0"]
 [compojure "1.4.0"]
 [ring "1.4.0"]
 [ring/ring-json "0.4.0"]
 ...
 [environ "1.0.2"]]
 :plugins [[lein-ring "0.9.7"]
 [lein-environ "1.0.2"]]
 :ring {:handler simple-calendar.core/webapp
 :init simple-calendar.core/init}
 :profiles {:uberjar {:aot :all}})

Automated deployment

derivative of by “Launch Button -- SMASH Rocket Club 5-9-09 4” Steven Depolo (CC BY 2.0)

https://www.flickr.com/photos/stevendepolo/3517227492
https://www.flickr.com/photos/stevendepolo/
https://creativecommons.org/licenses/by/2.0/

Automated deployment
Not really a language thing ...

... but good tooling can help a lot

Leiningen makes building fat JARs easy

WAR files can be generated as well

Logging & configuration

 by “27 Jan 2007 (Flickr)” wonderferret (CC BY 2.0)

https://www.flickr.com/photos/wonderferret/370675780
https://www.flickr.com/photos/wonderferret/
https://creativecommons.org/licenses/by/2.0/

Logging
Don’t let every app handle log files

Just write everything to stdout

Let some external tool handle storage

Standardize on log format

org.clojure/tools.logging
Macros delegating to different implementations

Supports slf4j, Apache commons-logging, log4j
and java.util.logging

Logging levels: :trace :debug :info :warn
:error :fatal

org.clojure/tools.logging
(ns simple-calendar.core
 (:require [clojure.tools.logging :as log])

(defn update-contact! [url]
 ...
 (log/info "Updated user" id new-email))

project.clj:
:dependencies [[org.clojure/tools.logging "0.3.1"]
 [log4j "1.2.17" :exclusions [javax.mail/mail
 javax.jms/jms
 com.sun.jdmk/jmxtools
 com.sun.jmx/jmxri]]
 [org.slf4j/slf4j-log4j12 "1.7.18"]
 ...]

org.clojure/tools.logging
log4j.properties:

log4j.rootLogger=INFO, standard

log4j.appender.standard=org.apache.log4j.ConsoleAppender
log4j.appender.standard.Target=System.out

log4j.appender.standard.layout=org.apache.log4j.PatternLayout
log4j.appender.standard.layout.ConversionPattern=%d{yyyy-mm-dd HH:mm:ss,SSS} [%p] %c - %m%n

stdout:

2015-11-18 13:11:54,468 [INFO] simple-calendar.core - Updated user 5f565040 eve@example.org
2015-11-18 13:11:54,476 [INFO] simple-calendar.core - Updated user 786494ef bob@example.org

Configuration
Store configuration in the environment, not in the
codebase

Use mechanism that works for every application,
e.g., environment variables

environ
Manages environment settings following 12factor

Reads values from

Java system properties

Environment variables

.lein-env (created via Leiningen plugin from
profiles.clj)

environ
(def contacts-feed (env :contacts-feed))

> java -Dcontacts.feed=http://contacts.example.org/feed
 -jar standalone.jar

> CONTACTS_FEED=http://contacts.example.org/feed
 lein ring server-headless

> lein ring server-headless

profiles.clj:
{:dev {:env {:contacts-feed "http://contacts.example.org/feed"}}}

Protocols & data formats

derivative of by “Free ports” Markus Reinhardt (CC BY 2.0)

https://www.flickr.com/photos/tuxxilla/1651993053
https://www.flickr.com/photos/tuxxilla/
https://creativecommons.org/licenses/by/2.0/

Protocols & data formats
Avoid using different protocols everywhere

Standardize on the outside:

HTTP

JSON

XML

Atom

HTTP server
Ring for HTTP basics

Compojure for routing

Request & response are data

A web app is a function which takes a request and
returns a response

https://github.com/ring-clojure/ring/blob/master/SPEC

https://github.com/ring-clojure/ring/blob/master/SPEC

Ring
(def example-request {:uri "/contacts"
 :request-method :get
 :headers {"Accept" "text/plain"}})

(defn example-app [req]
 {:status 200
 :body (str "Hello at " (:uri req))})

(example-app example-request)
> {:status 200
 :body "Hello at /contacts"}

Compojure
(defroutes contacts

 (GET "/contacts/:id" [id]

 (get-contact id))

 (PUT "/contacts/:id" [id :as request]

 (update-contact! id (:body request)))

 (POST "/contacts" request

 (add-contact! (:body request)))

 (GET "/feed" []

 {:status 200

 :headers {"Content-Type" "application/atom+xml"}

 :body (contacts-feed)})))

Frameworks
Quickly get a web app up and running.

Duct

Luminus

Pedestal

Modularity

tesla-microservices

org.clojure/data.json
Clojure data structures are JSON superset
(json/write-str {:name "Alice Miller"
 :teams ["Team A", "Team B"]})

> "{\"name\":\"Alice Miller\",\"teams\":[\"Team A\",\"Team B\"]}"

(json/read-str "{\"id\": 123,\"name\": \"Alice Miller\"}"
 :key-fn keyword)

> {:id 123, :name "Alice Miller"}

HTML
HTML is represented with generic data structures

This allows processing HTML with standard Clojure
functions

There are different formats, a popular one is called
“hiccup”

HTML
<html>
 <body>
 <h1>hello!</h1>

 </body>
</html>

[:html {}
 [:body {}
 [:h1 {} "hello!"]
 [:img {:src "some.jpg"}]
 [:img {:src "another.jpg"}]]]

Atom
XML format for representing feeds of data

Useful for doing pub/sub without middleware

Creating Atom Feeds
(defn entry [event]
 [:entry
 [:title (-> event :type name)]
 [:updated (:timestamp event)]
 [:author [:name "contacts service"]]
 [:id (str "urn:contacts:feed:event:" (:id event))]
 [:content {:type "json"} (json/generate-string event)]])

(defn atom-feed [events url]
 (clojure.data.xml/emit-str
 (clojure.data.xml/sexp-as-element
 [:feed {:xmlns "http://www.w3.org/2005/Atom"}
 [:id "urn:contacts:feed"]
 [:updated (-> events last :timestamp)]
 [:title {:type "text"} "contacts events"]
 [:link {:rel "self" :href url}]
 (map entry events)])))

Validation (clojure.spec)
[org.clojure/clojure "1.9.0-alpha5"]

(require '[clojure.spec :as s])

(defn id [] (str (java.util.UUID/randomUUID)))

(def event {:type :contact-created
 :timestamp (.getTime (java.util.Date.))
 :id (id))})

Validation (clojure.spec)
(s/def ::timestamp long?)

(s/def ::type keyword?)

(s/def ::id string?)

(s/def :unq/event (s/keys :req-un [::type ::timestamp ::id]))

(s/conform :unq/event event)

> {:type :contact-created
 :timestamp 1465388506376
 :id "c4f2381c-4152-4d77-b55f-fb7d7102998c"}

Validation (clojure.spec)
(s/conform :unq/event {:type :contact-created})

> :clojure.spec/invalid

(s/explain :unq/event {:type :contact-created})

> val: {:type :contact-created} fails spec: :unq/event predicate:
 [(contains? % :timestamp) (contains? % :id)]

(s/explain :unq/event {:type "contact-created"})

> val: {:type :contact-created} fails spec: :unq/event predicate:
 [(contains? % :timestamp) (contains? % :id)]
 In: [:type] val: "contact-created" fails spec: :user/type at:
 [:type] predicate: keyword?

adamwynne/feedparser-clj
Retrieves and Parses RSS/Atom feeds
(def f
 (feedparser/parse-feed "https://www.innoq.com/de/podcast.rss"))

(:title f)
> "innoQ Podcast"

(count (:entries f))
> 18

Library for consuming feeds based on feedparser:
Feedworker

https://github.com/innoq/feedworker

Lightweight messaging
Just a side note:

Kafka (clj-kafka)

RabbitMQ (Langohr)

...

Problems of distributed systems:
Stability

derivative of by “the Jenga” Ed Garcia (CC BY 2.0)

https://www.flickr.com/photos/egarc2/2432270195
https://www.flickr.com/photos/egarc2/
https://creativecommons.org/licenses/by/2.0/

Cascading failures

dash-
board

app

web
service

data-
base

Cascading failures

dash-
board

app

web
service

data-
base

Cascading failures

dash-
board

app

web
service

data-
base

Cascading failures

dash-
board

app

web
service

data-
base

Cascading failures

dash-
board

app

web
service

data-
base

How to achieve stability?

Bulkheads

derivative of by (Public Domain) “Titanic sinking” Willy Stöwer

http://commons.wikimedia.org/wiki/File:St%C3%B6wer_Titanic.jpg
http://commons.wikimedia.org/wiki/Willy_St%C3%B6wer

Asynchronous communication
Helps to decouple and separate different
application parts

E-mail notifications do not need to be sent
synchronously

org.clojure/core.async
Supports asynchronous programming and
communications

Messages can be sent to and read from channels

Channels can be buffered or unbuffered

Blocking and non-blocking operations possible

org.clojure/core.async
(def notifications (chan 1000))

org.clojure/core.async

(def notifications (chan 1000))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]
 (go (>! notifications {:email email
 :event-link event-link})))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]

 (go (>! notifications {:email email
 :event-link event-link})))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]

 (go (>! notifications {:email email
 :event-link event-link})))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]
 (go (>! notifications {:email email
 :event-link event-link})))

(defn notify-user [email event-link]
 ...)

(defn start-notifier []
 (go-loop [message (<! notifications)]
 (notify-user (:email message) (:event-link message))
 (recur (<! notifications))))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]
 (go (>! notifications {:email email
 :event-link event-link})))

(defn notify-user [email event-link]
 ...)

(defn start-notifier []

 (go-loop [message (<! notifications)]
 (notify-user (:email message) (:event-link message))

 (recur (<! notifications))))

org.clojure/core.async
(def notifications (chan 1000))

(defn send-notification [email event-link]
 (go (>! notifications {:email email
 :event-link event-link})))

(defn notify-user [email event-link]
 ...)

(defn start-notifier []

 (go-loop [message (<! notifications)]
 (notify-user (:email message) (:event-link message))

 (recur (<! notifications))))

Circuit Breaker

derivative of by “switch-fuse” Mark_K_ (CC BY 2.0)

https://www.flickr.com/photos/alpima/6976585857
https://www.flickr.com/photos/alpima/
https://creativecommons.org/licenses/by/2.0/

com.netflix.hystrix/hystrix-clj
Idiomatic Clojure wrapper for Hystrix
(hystrix/defcommand notify-user [email event-link]
 (client/post notification-service
 {:content-type :json
 :body ... }))

Will throw exception in case of timeout or other
failure

com.netflix.hystrix/hystrix-clj
; returns true if sucessful, false if circuit-breaker open
(hystrix/defcommand notify-user
 {:hystrix/fallback-fn notify-fallback}
 [email event-link]
 (client/post notification-service
 {:content-type :json
 :body ... })
 true)

; returns false if circuit-breaker open
(defn notify-fallback [email event-link]
 (let [isOpen (.isCircuitBreakerOpen hystrix/*command*)]
 ; add message to queue again
 (send-notification email event-link)
 (not isOpen)))

com.netflix.hystrix/hystrix-clj
(defn start-notifier []
 (go-loop [message (<! notifications)]
 (if-not (notify-user (:email message)
 (:event-link message))
 (do
 (log/error "Cannot reach notification service"
 "- will wait until next try")
 (<! (timeout 5000))))
 (recur (<! notifications))))

hystrix-event-stream-clj available as well

Monitoring

derivative of by “Space Shuttle Endeavour's Control Panels” Steve Jurvetson (CC BY 2.0)

https://www.flickr.com/photos/jurvetson/6912974136
https://www.flickr.com/photos/jurvetson/
https://creativecommons.org/licenses/by/2.0/

Questions
How many HTTP errors are occurring?

Are database queries failing?

Is that backend service slow again?

How many jobs are in the queue?

Metrics
Logging provides a stream of events

Metrics provide aggregated state

Popular library: Dropwizard Metrics

Two steps: collect metrics, then publish them

Gauges

 by “Old gauge, old style” speredenn (CC BY 2.0)

https://www.flickr.com/photos/jbcarre/5613684770
https://www.flickr.com/photos/jbcarre
https://creativecommons.org/licenses/by/2.0/

Gauges
Current state of one single value

Number of jobs in the queue

Some configured value

Ratio of cache hits to misses

Gauges
(def metrics-registry (new-registry))

(gauge-fn metrics-registry "jobs-ready"
 #(query database
 "select count(*)
 from jobs
 where status = 'ready'"))

Counters

derivative of by “The US National Debt clock / counter, New York” Ben Sutherland (CC BY 2.0)

https://www.flickr.com/photos/bensutherland/178413447
https://www.flickr.com/photos/bensutherland/
https://creativecommons.org/licenses/by/2.0/

Counters
Single numeric value

For example, number of logged in users

Counters
(def logged-in-users (counter metrics-registry "logged-in-users"))

(POST "/login" [name pwd]
 ...
 (inc! logged-in-users)
 ...)

(POST "/logout" [name]
 ...
 (dec! logged-in-users)
 ...)

Histograms

derivative of by “Number of cat posts on Metafilter per month, as a percentage of the total number of posts” Steven Taschuk (CC BY 2.0)

https://www.flickr.com/photos/stebulus/8193703647
https://www.flickr.com/photos/stebulus/
https://creativecommons.org/licenses/by/2.0/

Histograms
Distribution of numerical data (min, max, mean,
standard deviation, quantiles)

For example, number of search results

Different value “reservoirs”, e.g.,

Entire application lifetime

Last N searches

Last N minutes

Histograms
(def number-of-results
 (histogram metrics-registry "number-of-search-results"))

(defn search [query]
 (let [results (execute query)]
 (update! number-of-results (count results))
 results))

Meters

derivative of by “Hosp_1011” Justin Taylor (CC BY 2.0)

httpshttps://www.flickr.com/photos/bludgeoner86/448810329
https://www.flickr.com/photos/bludgeoner86/
https://creativecommons.org/licenses/by/2.0/

Meters
Rate of an event (per second)

Total count of events

Average rate over application lifetime

Rate in the last 1, 5 and 15 minutes

For example, incoming requests

Meters
(def inc-requests-meter
 (meters/meter metrics-registry "incoming-requests-meter"))

(defn requests-meter [handler]
 (fn [req]
 (meters/mark! inc-requests-meter)
 (handler req)))

Timers

 by “Stopwatch” William Warby (CC BY 2.0)

https://www.flickr.com/photos/wwarby/3296379139
https://www.flickr.com/photos/wwarby
https://creativecommons.org/licenses/by/2.0/

Timers
Histogram & meter

Histogram of duration of an activity, meter of
occurrence of the activity

For example, specific type of database query

Timers
(def inc-requests-timer
 (timers/timer! metrics-registry "incoming-requests-timer"))

(defn requests-timer [handler]
 (fn [req]
 (timers/time! inc-requests-timer
 (handler req))))

Reporting Metrics

Reporting
Metrics stores current state in its registry

Should be reported to external tool

Visualization

Historical data

Reporters for console, JMX, Ganglia, Graphite, CSV
etc. included

Conclusion
Organize around business capabilities

Rules & conventions needed

Standardize interfaces, logging and configuration

Different solutions to improve stability

Monitor your systems

Good support in Clojure

Example Microservices
Simple Calendar:

Simple Contacts:

https://github.com/innoq/simple-
calendar

https://github.com/innoq/simple-
contacts

https://github.com/innoq/simple-calendar
https://github.com/innoq/simple-contacts

Thank you! Questions?

https://www.innoq.com/en/talks/2016/06/microservices-clojure/

https://www.innoq.com/en/talks/2016/06/microservices-clojure/

