innoQ

{Nano|Micro|Mini}-Services?

Modularization for Sustainable Systems

Stefan Tilkov | innoQ
stefan.tilkov@innog.com
@stilkov

mailto:stefan.tilkov@innoq.com

microXchg 2015 - The Microservices

- i W
Conference in Berlin (~ m
Thursday, 12 February 2015 at 08:30 - Friday, 13 February 2015 at v

17:30 (CET)
Berlin, Germany

http://microxchg.io

1. Reviewing architectures

Generic Architecture Review Results

Deployment is
Building

Technical debtis way 100

well-known and not

features takes complicated and

too long

addressed slow
Architectural quality Scalability has reached
has degraded its limit
“-ility” problems
abound Replacement would

be way too expensive

Any architecture’s quality is inversely proportional
to the number of bottlenecks limiting its evolution,
development, and operations

«Insert Obligatory Conway Reference Here»

Conway’s Law

Organization — Architecture

“Organizations which design systems are

constrained to produce systems which are

copies of the communication structures of
these organizations.” — M.E. Conway

Reversal 1

Organization < Architecture

Any particular architecture approach
constraints organizational options — i.e. makes
some organizational models simple and others

hard to implement.

Reversal 2

Organization < Architecture

Choosing a particular architecture can be a
means of optimizing for a desired
organizational structure.

2. System boundaries

Modularization

New System |y Sy New System |

Consolidation

Legacy System | Sys Legacy System

Modernization

Legacy System

Greenfield

L
L
o
\
\ g
\ g
-
-
-
L g
o
- o
\ g

Project scope

1 Project = 1 System?

Size Modularization

1-50 LOC single file

e o
500-1000 LOC Library, class hierarchy

woozool0t meworksapplicaton

»2000 LOC multiple applications

System Characteristics

Separate (redundant) persistence
Internal, separate logic
Domain models & implementation strategies
Separate Ul
Separate development & evolution
Limited interaction with other systems

Autonomous deployment and operations

Domain architecture

Macro (technical) architecture

|
e

Micro architecture

Module C

Module B

- - -

Persistence Persistence Persistence

System A System B System C

Assumptions to be challenged

Large systems with a single environment
Separation internal/external
Predictable non-functional requirements
Clear & distinct roles
Planned releases
Built because they have to be

http://12factor.net

THE TWELVE-FACTOR APP

I. Codebase

One codebase tracked in revision control, many
deploys

II. Dependencies
Explicitly declare and isolate dependencies

II1. Config

Store config in the environment

IV. Backing Services

Treat backing services as attached resources

V. Build, release, run
Strictly separate build and run stages

VI. Processes

Execute the app as one or more stateless
processes

VII. Port binding

Export services via port binding

VIII. Concurrency

Scale out via the process model

IX. Disposability

Maximize robustness with fast startup and
graceful shutdown

X. Dev/prod parity

Keep development, staging, and production as
similar as possible

XI. Logs

Treat logs as event streams

XII. Admin processes

Run admin/management tasks as one-off
processes

http://12factor.net

App characteristics

Separate, runnable process
Accessible via standard ports & protocols
Shared-nothing model
Horizontal scaling
Fast startup & recovery

Microservice Characteristics

small
each running in its own process
lightweight communicating mechanisms (often HTTP)
built around business capabilities
independently deployable
mininum of centralized management
may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

System Characteristics

Separate (redundant) persistence
Internal, separate logic
Domain models & implementation strategies
Separate Ul
Separate development & evolution
Limited interaction with other systems

Autonomous deployment and operations

In search for a name....

. Executable component
Sovereign system

Bounded system

Small enough system System

| Autonomous system
Self-contained system Large enough system

Cohesive system Logical node Domain unit

Independent system Self-sufficient component

Small system
Full-stack service

Not-so-micro-service

Self-Contained System (SCS)

SCS Characteristics

Autonomous web application

Owned by one team

No sync remote calls

Service APl optional
Includes data and logic

No shared Ul
No or pull-based code sharing only

SCS App Microservice

Size (kLoC) 1-50 0.5-10 0.1-?

e efcontaned bxemal Sefcontained
per Logical System 5-25 o > 1oo ---------------------------
Communication betweenunits No(possie 7 "
w ued puded Eemal@

Ul Integration Yes (web-based) ? ?

But why?

Isolation

(Independent) Scalability

Localized decisions

Replaceability

Playground effect

Afraid of chaos?

Cross-system
Responsibilities

Ul integration
Communication protocols
Data formats

Redundant data

Bl interfaces

Logging, Monitoring

Necessary Rules & Guidelines

System-internal
Programming languages
Development tools
Frameworks
Process/Workflow control
Persistence

Design patterns

Coding guidelines

Domain
Architecture

Cross-system
Rules

System-internal
Rules

1.0

1.1

1.0

1.1

1.2

1.0

1.1

2.0

2.1

> €

Initial goals
Simplicity
Speed
Easy development
Maximum productivity

Long-term goals

Stability
Scalability
Maintainability

Decoupling

4. ... putting pieces together

Web-native front-end integration

Server-side integration

Browser

Examples:
ESI-Caches Backend 1

SSi
Portal Server
Frontend
—
Server

T

Backend 2

Client-side integration

Browser

Examples:
AJAX
Proprietary Frameworks

Backend 1

Backend 2

Browser

i .
< i R e e e L L e L e e P e e PP E R TEr Backend 1
: HTML Page 1 :
IV TASEL Creates)»
ie- mm e e e e e e i e mcecccccccc;eeceeeememeemmmmmmmm e cmmmmemee—o
: ; Backend 2
HTML Page 2
Asset

Server

Server-side integration options

Ed it t ES| (Portal server)
ge integration Homegrown
REST
Backend call RMI- RpC WS.*
Feeds
Storage DB replication
Chef, Puppet, ...
Deployment Build tools N
Asset pipeline
Git/SVN submodules Gems
Development .
Maven artifacts

Client-side integration options

5. Challenges

Organization

Architecture Governance

OrderMgmt

Cross-system

Responsibilities
Product
Ul integration Admin

Communication protocols "

Data formats
Redundant data
Bl interfaces

Logging, Monitoring

Surprise: There is a justification for someone
to take care of the overall architecture

Operations

System characteristics

Separate (redundant) persistence
Internal, separate logic
Domain models & implementation strategies
Separate Ul
Separate development & evolution
Limited interaction with other systems

Autonomous deployment and operations

If systems are really separate, they
need to be so from start to finish

Migration

Assumptions

High business value
Very high cost of change
Very slow “time to market”
Huge backlog of feature requests
Problem awareness
Strong management support

Close for change

I—> Enable integrateability

(auth/auth, navigation)

Create new system

for new features Integrate and/or
replace part

> Copy & isolate \

more patterns at http://aim42.org

http://aim42.org

Summary

Explicitly design system boundaries
Modularize into independent, self-contained systems
Separate micro and macro architectures
Be aware of changing quality goals
Strike a balance between control and decentralization

Than k yOU! Stefan Tilkov, @stilkov

- 9 stefan.tilkov@innoqg.com
QUESth“S) http://www.innog.com/blog/st/

C()m ments? Phone: +49 170 471 2625

innoQ Deutschland GmbH innoQ Schweiz GmbH

i n n O Q Krischerstr. 100 Ohlauer Strafde 43 Robert-Bosch-Strafie 7 Radlkoferstrafie 2 Gewerbestr. 11
40789 Monheim am Rhein 10999 Berlin 64293 Darmstadt D-81373 Miinchen CH-6330 Cham
Germany Germany Germany Germany Switzerland

WWWw.Innog.com Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Telefon +49 (0) 89 741185-270 Phone: +41 41 743 0116

mailto:stefan.tilkov@innoq.com
http://www.innoq.com
http://www.innoq.com

