
{Nano|Micro|Mini}-Services?
Modularization for Sustainable Systems

Stefan Tilkov | innoQ
stefan.tilkov@innoq.com

@stilkov

mailto:stefan.tilkov@innoq.com

http://microxchg.io

1. Reviewing architectures

Generic Architecture Review Results

Building
features takes

too long

Technical debt is
well-known and not

addressed

Deployment is
way too

complicated and
slow

Replacement would
be way too expensive

Scalability has reached
its limit

Architectural quality
has degraded

“-ility” problems
abound

Any architecture’s quality is inversely proportional
to the number of bottlenecks limiting its evolution,

development, and operations

«Insert Obligatory Conway Reference Here»

Conway’s Law

“Organizations which design systems are
constrained to produce systems which are
copies of the communication structures of

these organizations.” – M.E. Conway

Organization → Architecture

Reversal 1

Any particular architecture approach
constraints organizational options – i.e. makes
some organizational models simple and others

hard to implement.

Organization ← Architecture

Reversal 2

Choosing a particular architecture can be a
means of optimizing for a desired

organizational structure.

Organization ← Architecture

2. System boundaries

Modularization

Legacy SystemNew System New System

New System

Consolidation

Legacy System Legacy System

New SystemLegacy System

Modernization

New System

Greenfield

Project scope

1 Project = 1 System?

Size Modularization

1-50 LOC single file

50-500 LOC few files, few functions

500-1000 LOC Library, class hierarchy

1000-2000 LOC Framework + application

>2000 LOC multiple applications

System Characteristics
Separate (redundant) persistence

Internal, separate logic
Domain models & implementation strategies

Separate UI
Separate development & evolution

Limited interaction with other systems
Autonomous deployment and operations

Macro (technical) architecture

Domain architecture

JRuby C#

Scala
Groovy 

Java
Clojure

RDBMS
NoSQL

K/V

RDBMS RDBMS/DWH
NoSQL 
DocDB

RDBMS
NoSQL

K/V

RDBMS RDBMS/DWH
NoSQL 
DocDB

Micro architecture

Persistence

Logic

UI

M
odule A

M
odule B

M
odule C

System A

Persistence

Logic

UI

System B

Persistence

Logic

UI

System C

Persistence

Logic

UI

Assumptions to be challenged
Large systems with a single environment

Separation internal/external
Predictable non-functional requirements

Clear & distinct roles
Planned releases

Built because they have to be

http://12factor.net

http://12factor.net

Separate, runnable process
Accessible via standard ports & protocols

Shared-nothing model
Horizontal scaling

Fast startup & recovery

App characteristics

Microservice Characteristics
small

each running in its own process
lightweight communicating mechanisms (often HTTP)

built around business capabilities
independently deployable

mininum of centralized management
may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

System Characteristics
Separate (redundant) persistence

Internal, separate logic
Domain models & implementation strategies

Separate UI
Separate development & evolution

Limited interaction with other systems
Autonomous deployment and operations

In search for a name …

Not-so-micro-service

Autonomous system

Full-stack service

Self-sufficient component
Small system

Sovereign system

Independent system

Cohesive system

Large enough system

Small enough system

Logical node Domain unit

Bounded system

Executable component

System

Self-contained system

Self-Contained System (SCS)

SCS Characteristics
Autonomous web application

Owned by one team
No sync remote calls
Service API optional

Includes data and logic
No shared UI

No or pull-based code sharing only

SCS App Microservice

Size (kLoC) 1-50 0.5-10 0.1-?

State Self-contained External Self-contained

per Logical System 5-25 >50 >100

Communication between units No (if possible) ? Yes

UI Included Included External (?)

UI Integration Yes (web-based) ? ?

But why?

Isolation

(Independent) Scalability

Localized decisions

Replaceability

Playground effect

Afraid of chaos?

Necessary Rules & Guidelines
Cross-system System-internal

Responsibilities Programming languages
UI integration Development tools
Communication protocols Frameworks

Data formats Process/Workflow control

Redundant data Persistence
BI interfaces Design patterns
Logging, Monitoring Coding guidelines

t

Domain
Architecture 1.0 1.1

System-internal
Rules 1.0 1.1 2.0 2.1

Cross-system
Rules 1.0 1.1 1.2

Initial goals
Simplicity

Speed
Easy development

Maximum productivity

Long-term goals
Stability

Scalability
Maintainability

Decoupling

4. … putting pieces together

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Client Logic

Orchestration

Service Interface Service Interface

Client Logic

Orchestration

Business Logic Business Logic

Presentation Logic

Business Logic Business Logic

Presentation Logic Presentation Logic

Web-native front-end integration

Browser

HTML Page

Backend 1

UI 1

UI 2

Server-side integration

Backend 2

Frontend 
Server

Examples:
ESI-Caches
SSI
Portal Server

Browser

HTML Page

Backend 1

UI 1

UI 2

Client-side integration

Backend 2

Examples:
AJAX
Proprietary Frameworks

Browser

HTML Page 1

Links

Backend 1

Backend 2

Asset
Server

HTML Page 2

CSS

<<creates>>

<<creates>>

Development

Deployment

Storage

Backend call

Edge integration

Server-side integration options
ESI

Homegrown
(Portal server)

Build tools
Chef, Puppet, …

Asset pipeline

Git/SVN submodules Gems
Maven artifacts

DB replication
Feeds

RPC
RESTRMI

WS-*

Link

Replaced link

Client-side integration options

Client call

Magical integration concept

Unobtrusive JS
ROCA-style

oEmbed

SPA-style
JS Widgets

5. Challenges

Organization

Cross-system

Responsibilities

UI integration

Communication protocols

Data formats

Redundant data

BI interfaces

Logging, Monitoring

Product
Admin

OrderMgmt

Catalog
Inventory

Mgmt
Data

Export

Billing

Architecture Governance

Surprise: There is a justification for someone
to take care of the overall architecture

Operations

System characteristics
Separate (redundant) persistence

Internal, separate logic
Domain models & implementation strategies

Separate UI
Separate development & evolution

Limited interaction with other systems
Autonomous deployment and operations

Dev Ops

If systems are really separate, they
need to be so from start to finish

Migration

Assumptions
High business value

Very high cost of change
Very slow “time to market”

Huge backlog of feature requests
Problem awareness

Strong management support

Close for change

Enable integrateability 
(auth/auth, navigation)

Create new system 
for new features

Copy & isolate

Integrate and/or 
replace part

more patterns at http://aim42.org

http://aim42.org

Explicitly design system boundaries
Modularize into independent, self-contained systems

Separate micro and macro architectures
Be aware of changing quality goals

Strike a balance between control and decentralization

Summary

Thank you!
Questions?
Comments?

Stefan Tilkov, @stilkov
stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Robert-Bosch-Straße 7
64293 Darmstadt
Germany
Phone: +49 2173 3366-0

Radlkoferstraße 2
D-81373 München
Germany
Telefon +49 (0) 89 741185-270

mailto:stefan.tilkov@innoq.com
http://www.innoq.com
http://www.innoq.com

