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Overview



REST

e Architectural style _ _
Microservice

e Constraints in architecture resultin
traits of the system

o |dentifiable resources, uniform 9
interface, representations,
hypermedia

Microservice

e Synchronous by default




REST

Mlcroserwce

e Service discovery
* DNS or registry & hypermedia

e Load balancing 9
e Dedicated infrastructure

O

» Software load-balancer (Ribbon)

Mlcroserwce




Messaging

Microservice

e Microservices send message @
e Asynchronously

Microservice




Load Balancing

Microservice

« Can have any numbers of

instances of a receiver g g g 8 g

e Load Balancing very easy

Microservice




Service Discovery

e Microservices send
messages to queues / topics

Microservice

e Receiver(s) read messages

e Decoupled by queues & ggggg

messages

e No need for service
di SCOVe ry Microservice




Fire & Forget



Example

Credit card booking
200€

Payment
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REST

Microservice

e F&F doesn’t fit naturally
e Which HTTP method to use?

e Requests to create side
effects

« DELETE, PUT, POST

Microservice
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Safety / Idempotency

HTTP Method Safe [tempotent
GET v, &
PUT (%
DELETE (X
POST (%
PATCH (%




REST: Failure

Microservice

e Remote system unavailable

e Can’t easily retry because
of non-itempotency

 Status codes to
communicating semantic
problems

Microservice
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Messaging
 Hand message over to

Mmessa gi ng system Microservice

e Messaging system

guarantees delivery ggggg

o Stores message

* Acknowledgement

Microservice

e Might have duplicated messages
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Messaging: Failures

MNP

« Message doesn’t make it into

the message broker
Microservice

=

e e.g. Timeout / TCP problem
e Retry

MMM

e Rely on re-transmission of
Incoming message

Microservice
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Request & Reply



Example

Validate credit card # l [ OK / not OK
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REST

 Natural model
Mlcroserwce

 GET request

e Support for caching built in

« ETags, Last-Moditied, 9
conditional GET / PUT

O

e Still needs care

Mlcroserwce

 Timeouts, resilience
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Messaging

Microservice
e Send request

e EXpect response

e Correlation
e ...Ortemporary queue

e Asynchronous by design

Microservice
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Resilience

Microservice
e Messaging can guarantee

delivery
e Failure justincreases latency

e System must deal with
latency anyway

Microservice
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Event Dnven Architecture

e Order sends events

New Order

e Decoupled: no call but events Event

e Receiver handle events as

they please Payment: Delivery:
Books credit card Ship products
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Event Driven Architecture
e System are built around publishing domain events
e Multiple event listeners
 Event listener decides what to do
« Can easily add new event listener with additional business logic

e Challenges
 Delivery hard to guarantee
« What about old events?
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Events + REST = Feed

« System stores domain events and publishes feed (e.g. Atom)
e Strong consistency within the service
* No additional infrastructure required
 Getting closer to Event Sourcing

e Clients subscribe to feed
e Clients in charge of polling frequency

 Server side optimizations: caching, ETags, pagination, links

 Client side optimizations: conditional requests
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Messaging
e Publish / Subscribe e.g. JMS Topics
« History of events limited

e Guaranteed delivery somewhat harder
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» Enterprise Integration
Patterns (Hohpe, Woolf)

e Contains patterns like
Router, Translator or Adapter

 Create flexible messaging
architectures
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More Decoupling
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Code

@Inject OrderRepository repository;

@Transactional

public void order(Order order) {
repository.save(order.deliver());
doCreditCardBooking(order.getCcNumber());

¥
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Transactions



Messaging & Transactions (Commit)

e« Database commit

* |Incoming messages

acknowledged 8 ' »@
o Commit success: outgoing

messages sent

» Qutgoing messages hopefully -

handled successfully.

 Inconsistencies: Outgoing
messages not yet processed
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Messaging & Transactions (Rollback)

. Database rollback 8 "N Microservice

e Qutgoing message not sent

* Incoming message
retransmitted

31



REST & Transactions

* No implicit infrastructure support

e But can be built manually
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REST & Transactions

@Inject OrderRepository repository;
@Inject ApplicationkEventPublisher publisher;

@Transactional

public void order(Order order) {
repository.save(order.deliver());
publisher.publish(new OrderDeliveredEvent(order));

¥

@TransactionalEventlListener(phase = TransactionPhase.AFTER_COMMIT)
public void onOrder(Order order) {
doCreditCardBooking(order.getCcNumber());

¥
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Evolvability




Evolvability
» Core aspect of Microservices: independent deployability
e Means: decoupling

e Change in one system must not break downstream systems
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REST

e Core concepts built into the protocol

e Representations
* Content negotiation
« Media types

 Hypermedia
e Discoverability
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Messaging

« Data format: Your choice
e |.e. easy to evolve if changes backwards-compatible

« But: no support for content negotation
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Communication style

Service Discovery

Strengths

Summary

REST

synchronous

DNS, Service Registry
Resource Discovery

Content negotiation, Hypermedia
More control over direct interaction
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Messaging

asynchronous

Message Broker
Queues / Topics

Messages in
Re-submission of messages



Your next project:
Messaging or
REST?




You'll probably
use both :-)




