
REST VS. Messaging
Integration Approaches for Microservices

Eberhard Wolff
!/" ewolff !/" olivergierke

Oliver Gierke

Microservices

2

ECommerce

Order Customer

Delivery

Order Customer

Delivery

Package WAR

Integration

3

UI

Logic

Data

Links Modular UI

REST Messaging

Replication
No Common 

Schema!

Overview

4

REST

• Architectural style

• Constraints in architecture result in
traits of the system

• Identifiable resources, uniform
interface, representations,
hypermedia

• Synchronous by default

5

? $

Microservice

Microservice

REST

• Service discovery
• DNS or registry & hypermedia

• Load balancing
• Dedicated infrastructure
• So!ware load-balancer (Ribbon)

6

? "

Microservice

Microservice

Messaging

• Microservices send message

• Asynchronously

7

Microservice

Microservice

!!!

Load Balancing

• Can have any numbers of
instances of a receiver

• Load Balancing very easy

8

Microservice

%%%%%

MicroserviceMicroserviceMicroservice

Service Discovery

• Microservices send
messages to queues / topics

• Receiver(s) read messages

• Decoupled by queues &
messages

• No need for service
discovery

9

Microservice

%%%%%

MicroserviceMicroserviceMicroservice

Fire & Forget

10

Example

11

Order

Payment

Credit card booking
200€

REST

• F&F doesn’t fit naturally

• Which HTTP method to use?

• Requests to create side
effects
• DELETE, PUT, POST

12

? $

Microservice

Microservice

Safety / Idempotency

13

HTTP Method Safe Itempotent

GET & &

PUT ' &

DELETE ' &

POST ' '

PATCH ' '

REST: Failure

• Remote system unavailable
• Can’t easily retry because

of non-itempotency

• Status codes to
communicating semantic
problems

14

? $

Microservice

Microservice

(

Messaging

• Hand message over to
messaging system

• Messaging system  
guarantees delivery

• Stores message

• Acknowledgement

• Might have duplicated messages

15

Microservice

%%%%%

Microservice

Messaging: Failures

• Message doesn’t make it into
the message broker

• e.g. Timeout / TCP problem

• Retry

• Rely on re-transmission of
incoming message

16

%%

Microservice

%%%%%
(

%%%%%

Microservice

Request & Reply

17

Example

18

Order

Payment

Validate credit card # OK / not OK

REST

• Natural model

• GET request

• Support for caching built in
• ETags, Last-Modified,

conditional GET / PUT

• Still needs care
• Timeouts, resilience

19

? $

Microservice

Microservice

Messaging

• Send request

• Expect response

• Correlation
• …or temporary queue

• Asynchronous by design

20

Microservice

Microservice

! ! ! !

Resilience

• Messaging can guarantee
delivery

• Failure just increases latency

• System must deal with
latency anyway

21

Microservice

Microservice

% % % %

(

Events

22

Event Driven Architecture

• Order sends events

• Decoupled: no call but events

• Receiver handle events as
they please

23

Order

New Order
Event

Payment:
Books credit card

Delivery: 
Ship products

Event Driven Architecture
• System are built around publishing domain events

• Multiple event listeners

• Event listener decides what to do

• Can easily add new event listener with additional business logic

• Challenges
• Delivery hard to guarantee
• What about old events?

24

Events + REST = Feed
• System stores domain events and publishes feed (e.g. Atom)
• Strong consistency within the service
• No additional infrastructure required
• Getting closer to Event Sourcing

• Clients subscribe to feed
• Clients in charge of polling frequency

• Server side optimizations: caching, ETags, pagination, links

• Client side optimizations: conditional requests

25

Messaging
• Publish / Subscribe e.g. JMS Topics

• History of events limited

• Guaranteed delivery somewhat harder

26

More Decoupling

• Enterprise Integration
Patterns (Hohpe, Woolf)

• www.eaipatterns.com

• Contains patterns like
Router, Translator or Adapter

• Create flexible messaging
architectures

27

Code

28

@Inject OrderRepository repository;

@Transactional
public void order(Order order) {
 repository.save(order.deliver());
 doCreditCardBooking(order.getCcNumber());
}

Transactions

29

Messaging & Transactions (Commit)
• Database commit

• Incoming messages
acknowledged

• Commit success: outgoing
messages sent

• Outgoing messages hopefully
handled successfully.

• Inconsistencies: Outgoing
messages not yet processed

30

Microservice %%%%

Microservice %%%%

Messaging & Transactions (Rollback)

• Database rollback

• Outgoing message not sent

• Incoming message
retransmitted

31

(

REST & Transactions
• No implicit infrastructure support

• But can be built manually

32

REST & Transactions

33

@Inject OrderRepository repository;
@Inject ApplicationEventPublisher publisher;

@Transactional
public void order(Order order) {
 repository.save(order.deliver());
 publisher.publish(new OrderDeliveredEvent(order));
}

@TransactionalEventListener(phase = TransactionPhase.AFTER_COMMIT)
public void onOrder(Order order) {
 doCreditCardBooking(order.getCcNumber());
}

Evolvability

34

Evolvability
• Core aspect of Microservices: independent deployability

• Means: decoupling

• Change in one system must not break downstream systems

35

REST
• Core concepts built into the protocol

• Representations
• Content negotiation
• Media types

• Hypermedia
• Discoverability

36

Messaging
• Data format: Your choice
• i.e. easy to evolve if changes backwards-compatible

• But: no support for content negotation

37

Summary

38

REST Messaging

Communication style synchronous asynchronous

Service Discovery
DNS, Service Registry 
Resource Discovery

Message Broker 
Queues / Topics

Strengths
Content negotiation, Hypermedia

More control over direct interaction
Messages in

Re-submission of messages

Your next project:
Messaging or

REST?
39

You’ll probably
use both :-)

40

