W-JaxX

REYT VY. Messaging

Integration Approaches for Microservices

Eberhard Wolff Oliver Gierke
/() ewolff /() olivergierke

innoQ' Pivotal

Microservices

Order Customer

Delivery »

ECommerce

Dehvery

Integration

Modular UI

Messaging

No Common

Replication Schemal

Overview

REST

e Architectural style _ _
Microservice

e Constraints in architecture resultin
traits of the system

o |dentifiable resources, uniform 9
interface, representations,
hypermedia

Microservice

e Synchronous by default

REST

Mlcroserwce

e Service discovery
* DNS or registry & hypermedia

e Load balancing 9
e Dedicated infrastructure

O

» Software load-balancer (Ribbon)

Mlcroserwce

Messaging

Microservice

e Microservices send message @
e Asynchronously

Microservice

Load Balancing

Microservice

« Can have any numbers of

instances of a receiver g g g 8 g

e Load Balancing very easy

Microservice

Service Discovery

e Microservices send
messages to queues / topics

Microservice

e Receiver(s) read messages

e Decoupled by queues & ggggg

messages

e No need for service
di SCOVe ry Microservice

Fire & Forget

Example

Credit card booking
200€

Payment

11

REST

Microservice

e F&F doesn’t fit naturally
e Which HTTP method to use?

e Requests to create side
effects

« DELETE, PUT, POST

Microservice

12

Safety / Idempotency

HTTP Method Safe [tempotent
GET v, &
PUT (%
DELETE (X
POST (%
PATCH (%

REST: Failure

Microservice

e Remote system unavailable

e Can’t easily retry because
of non-itempotency

 Status codes to
communicating semantic
problems

Microservice

14

Messaging
 Hand message over to

Mmessa gi ng system Microservice

e Messaging system

guarantees delivery ggggg

o Stores message

* Acknowledgement

Microservice

e Might have duplicated messages

15

Messaging: Failures

MNP

« Message doesn’t make it into

the message broker
Microservice

=

e e.g. Timeout / TCP problem
e Retry

MMM

e Rely on re-transmission of
Incoming message

Microservice

16

Request & Reply

Example

Validate credit card # l [OK / not OK

18

REST

 Natural model
Mlcroserwce

 GET request

e Support for caching built in

« ETags, Last-Moditied, 9
conditional GET / PUT

O

e Still needs care

Mlcroserwce

 Timeouts, resilience

19

Messaging

Microservice
e Send request

e EXpect response

e Correlation
e ...Ortemporary queue

e Asynchronous by design

Microservice

20

Resilience

Microservice
e Messaging can guarantee

delivery
e Failure justincreases latency

e System must deal with
latency anyway

Microservice

21

Event Dnven Architecture

e Order sends events

New Order

e Decoupled: no call but events Event

e Receiver handle events as

they please Payment: Delivery:
Books credit card Ship products

23

Event Driven Architecture
e System are built around publishing domain events
e Multiple event listeners
 Event listener decides what to do
« Can easily add new event listener with additional business logic

e Challenges
 Delivery hard to guarantee
« What about old events?

24

Events + REST = Feed

« System stores domain events and publishes feed (e.g. Atom)
e Strong consistency within the service
* No additional infrastructure required
 Getting closer to Event Sourcing

e Clients subscribe to feed
e Clients in charge of polling frequency

 Server side optimizations: caching, ETags, pagination, links

 Client side optimizations: conditional requests

25

Messaging
e Publish / Subscribe e.g. JMS Topics
« History of events limited

e Guaranteed delivery somewhat harder

26

» Enterprise Integration
Patterns (Hohpe, Woolf)

e Contains patterns like
Router, Translator or Adapter

 Create flexible messaging
architectures

27

More Decoupling

: //// . ./‘///,// 77 //i,/,// /}:/,//////,)/ . SetteEd)

ENTERPRISE

INTEGRATION ~“*

PATTERNS

GREGOR HOHPE
BosBy WOOLF

Code

@Inject OrderRepository repository;

@Transactional

public void order(Order order) {
repository.save(order.deliver());
doCreditCardBooking(order.getCcNumber());

¥

28

Transactions

Messaging & Transactions (Commit)

e« Database commit

* |Incoming messages

acknowledged 8 ' »@
o Commit success: outgoing

messages sent

» Qutgoing messages hopefully -

handled successfully.

 Inconsistencies: Outgoing
messages not yet processed

30

Messaging & Transactions (Rollback)

. Database rollback 8 "N Microservice

e Qutgoing message not sent

* Incoming message
retransmitted

31

REST & Transactions

* No implicit infrastructure support

e But can be built manually

32

REST & Transactions

@Inject OrderRepository repository;
@Inject ApplicationkEventPublisher publisher;

@Transactional

public void order(Order order) {
repository.save(order.deliver());
publisher.publish(new OrderDeliveredEvent(order));

¥

@TransactionalEventlListener(phase = TransactionPhase.AFTER_COMMIT)
public void onOrder(Order order) {
doCreditCardBooking(order.getCcNumber());

¥

33

Evolvability

Evolvability
» Core aspect of Microservices: independent deployability
e Means: decoupling

e Change in one system must not break downstream systems

35

REST

e Core concepts built into the protocol

e Representations
* Content negotiation
« Media types

 Hypermedia
e Discoverability

36

Messaging

« Data format: Your choice
e |.e. easy to evolve if changes backwards-compatible

« But: no support for content negotation

37

Communication style

Service Discovery

Strengths

Summary

REST

synchronous

DNS, Service Registry
Resource Discovery

Content negotiation, Hypermedia
More control over direct interaction

38

Messaging

asynchronous

Message Broker
Queues / Topics

Messages in
Re-submission of messages

Your next project:
Messaging or
REST?

You'll probably
use both :-)

