
Systematic Software
Improvement

Alexander Heusingfeld
Dr. Gernot Starke

Reality

Goal

Thesis:
Education focused

on „build-from-scratch“

Software

of systems

Thesis:
Business requires more

maintenance
competence

Thesis:
Improvement

is more than Refactoringof single classes

of Systems

These:

Verbesserung
ist mehr als Refactoring

„Große“ Umbauten bedeuten (oft):

• Umbau DB-Struktur, Datenmigration

• Austausch von Software-Infrastruktur
 (z.B. Frameworks)

• umfangreiche Änderung interner Abläufe

• massive Änderung interner Schnittstellen

Thesis:
Management

responsible for budget
ignores

architecture principles

Architecture Improvement Method

an
aly
ze evaluate

improve

an
aly
ze evaluate

improve

• architecture

• code

• runtime

• organization

an
aly
ze evaluate

improve

determine „value“ of
problems / risks /

issues and
their remedies

an
aly
ze evaluate

improve
• define improvement strategy

• refactor

• re-architect

• re-organize

• remove debt

„Analysis“ Overview an
aly
ze evaluate

improve

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
issues

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

an
aly
ze evaluate

improve„Analysis“ Details

Qualitative
Analysis

ATAM

Context
Analysis

Issue Tracker
Analysis

Data
Analysis

Documentation
Analysis

Runtime
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

Requirements
Analysis

foundation for

part of

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

identify
risk areas

Questionnaire

prepares
gives

overview

Software
Archeology

supported by

measure
at runtime

Static Code
Analysis

measure
code

supports

fundamental crosscutting

Legend:

collect
issues

collect
improvement
opportunities

part ofDevelopment
Process
Analysis part of

find
input for

Infrastructure
Analysis

part of

Instrument
System

provide
better

information

Common Wording

an
aly

ze

evaluate

improve

crosscutting
practices &
principles

Issue
(Problem)

Improvement
(remedy)

Cost

Risk

Cause

cost of
improvement

improvement
has risks

or consequence

improvements
resolve cause

(root) causes
of issues

cost of
issue

(potential)
cost of risk

risk might result
in issue

solve issue with
improvement(s)

improvement
solves issue(s)

an
aly
ze

evaluate

improve

collect…

Groundwork (1)

an
aly

ze

evaluate

improve

crosscutting
practices &
principles

Iterate!

Groundwork (2)

an
aly

ze

evaluate

improve

crosscutting
practices &
principles

collect
issues!

collect
improvements!

m:n

Groundwork (3)

an
aly

ze

evaluate

improve

crosscutting
practices &
principles

collect
issues

collect
opportunities for

improvement

create from

Explicit
Assumption

Improvement
Backlog

keep explicit
list or table

helps
understand

Issue
List

keep explicit
list or table

m:n
mapping

Groundwork (4)

an
aly

ze

evaluate

improve

crosscutting
practices &
principles

fundamental

Legend:

collect
issues

collect
opportunities for

improvement

create from

change has
impact

Impact
Analysis

might create
new problems

Expect
Denial

Explicit
Assumption

Improvement
Backlog

Fail
Fast

Fast
Feedback

Separate
Cause From

Effect

Slide or
Write

Traceability

keep trace
to problem

stakeholders
deny problems

traces help prove
your points

keep explicit
list or table

helps
understand

root cause
analysis

presentation
or

written report

solution to
what problem(s)

Issue
List

Artifact

keep explicit
list or table

m:n
mapping

„Analysis“ Overview

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
problems

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

an
aly
ze evaluate

improve

Talk to the
right people!

„Analysis“ Overview

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
problems

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

an
aly
ze evaluate

improve

Understand the
neighbourhood!

Context Example

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
problems

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

„Analysis“ Overview an
aly
ze evaluate

improve

Systemic
issues with the
organization?

„Analysis“ Overview

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
problems

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

an
aly
ze evaluate

improve

Quality
issues?

Qualitative Analysis
Pr
ep
ar
at
io
n

Identify the relevant
stakeholders

K
ic
ko
ff

Present the ATAM
method

Present the business
objectives and

architecture goals

Present the architecture
of the system

Ev
al
ua
tio
n

Explain detailed the
architecture
approaches

Create a quality tree
and scenarios

Analyze architecture
approaches with

respect to the scenarios

Fo
llo
w
-u
p

Present the results

Qualitative Analysis
Software Product
Quality Attributes

ISO 25010

Functional
Suitability Reliability Performance

efficiency Operability Security Compatibility Maintain-
ability

Transfer-
ability

Appropriate-
ness
Accuracy
Compliance

Availability
Fault
tolerance
Recover-
ability
Compliance

Time-
behaviour
Resource-
utilisation
Compliance

Appropriate-
ness
Recognise-
ability
Learnability
Ease-of-use
Helpfulness
Attractiveness
Technical
accessibility
Compliance

Confidential-
ity
Integrity
Non-
repudiation
Account-
ability
Authenticity
Compliance

Replace-
ability
Co-
existence
Inter-
operability
Compliance

Modularity
Reusability
Analyzability
Changeability
Modification
stability
Testability
Compliance

Portability
Adaptability
Installability
Compliance

„Analysis“ Overview

Qualitative
Analysis

Context
Analysis

Stakeholder
Analysis

Stakeholder
Interviewprepares

validates
external

stakeholder

Quantitative
Analysis

finds risks
and non-risks

gives
overview

fundamental crosscutting

Legend:collect
problems

collect
improvement
opportunities

Development
Process
Analysis

part of

find
input for

an
aly
ze evaluate

improve

Measure!

Stakeholder Analysis an
aly
ze evaluate

improve

top-management, business-management, project-management, product-
management, process-management, client, subject-matter-expert,
business-experts, business-development, enterprise-architect, IT-strategy,
lead-architect, developer, tester, qa-representative, configuration-manager,
release-manager, maintenance-team, external service provider, hardware-
designer, rollout-manager, infrastructure-planner, infrastructure-provider,
IT-administrator, DB-administrator, system-administrator, security- or
safety-representative, end-user, hotline, service-technician, scrum-master,
product-owner, business-controller, marketing, related-projects, public or
government agency, authorities, standard-bodies, external service- or
interface providers, industry- or business associations, trade-groups,
competitors

Role /
Name

Description Intention Contribution Contact

Identify the
right people!

 Stakeholder Analysis (II)

who MIGHT have problems
or know things...

an
aly
ze evaluate

improve

• use (pre-interview) questionnaire

• conduct personal interviews:
 e.g. what are your top-3 issues with...
1. the system
2. the development / maintenance process
3. operation / infrastructure of the system
4. ...

an
aly
ze evaluate

improve

 Static Code Analysis
(here: SonarQube dashboard / Apache PDFbox)

an
aly
ze evaluate

improve

 Static Code Analysis
(here: afferent coupling)

Perishable Food Packaging

> Embedded software + information systems

> Regulated domain -> safety critical

> Goal: Decrease SW development cost

Food: Analysis
> Stakeholder analysis and -interviews

> Development Process Analysis

> Qualitative Analysis + View-Based-Understanding

> Quantitative Analysis, Static Code Analysis

> Central problem areas:

> Lack of overview („knowledge islands“)

> Low code quality

> ad-hoc development: No systematic processes

Food: Root-Cause Analysis

> Company focus primarily on hardware

> Software development scattered in
various departments

> No (planned) software architecture

Food: Analysis (excerpt)

issue (problem) description problem-cost

time-to-market
> 6 month (!) from business or

government requirement to production
sales loss might

be > 1M$

production log data loss

architecture does not ensure complete
production logs - data records might get
lost! Large volumes of perishable food

could be at risk

> 10-100k $ per
incident

scattered knowledge +
low code quality

no synergy effects,
no conceptual integrity,

no re-use between departments,
...

>5-50k $ per
maintenance

update

self-developed OR-mapper
expensive maintenance,

high know-how requirements,
high deviation in performance

5-10k $ per
maintenance

update

Food: System Overview
> C# / .NET as development & production platform

Machine
Operational

Support

Sales Support

Database

Machine
Sensors

Message
Queue

Legend:

COTSC#

Data Storage
&

Reporting

Machine
Configuration

Frontend

Machine
Configuration

Backend

Food: Safety Risk

Wrong usage of Message Queue:

> 1.-3. has to be transactional

> Reporting „commits“ to MQ
after 2! (too early!)

> Problem in reporting
leads to lost data!

Machine
Operational

Support

Sales Support

Database

Machine
Sensors

Message
Queue

Legend:

COTSC#

Data Storage
&

Reporting

Machine
Configuration

Frontend

Machine
Configuration

Backend

1 2

3

EU Telecom Provider

> Business Intelligence Portfolio to support
Marketing & Sales

Telco: Analysis
> View-Based-Understanding

> Data Analysis

> (few) stakeholder interviews

> Central problem areas:

> BI Reporting highly fragmented & diverse

> Report implementation details driven by business experts
(provided data models + SQL query details as „requirements“)

> Implementation partially based upon proprietary meta-model

Telco: Analysis (excerpt)

problem / risk description problem-cost

high development cost
business benchmarks showed

development to be overly expensive (and
slow)

per report-type
50-200%

non-transparent software and
data architecture

of >50 developers and BI experts, only
very few understood whole DWH

vendor-lock-in
proprietary tools implemented to process

(proprietary) meta-model, high yearly
license cost,

50 k€ license
fee / yr,

O(1000) dev-hrs
wasted

developer exodus
core developers upset as company

announced large outsourcing deal, (nearly)
annihilating internal development

6-18 month
without new

business features

 Croc: Sales & ERP Provider

> Niche provider for sales & ERP „standard“
solution

> Origin in „perishable“ market - but growing

> 80% of clients: low-margin-high-volume

> 20% of clients: low-volume-very-high-margin

> Original idea: Universal-Core + Configuration

> Starting point:
low (dev + runtime) performance

Co
m

pa
ny

 n
am

e
ch

an
ge

d
du

e
to

 a
no

ny
m

ity
 re

qu
ire

m
en

ts
!

Croc: Analysis
> Brief stakeholder analysis and -interviews

> Static Code Analysis

> Runtime Analysis

> Data Analysis (including data model)

> Central problem areas:

> Excellent code quality („clean code“) - but very few unit tests

> Extremely high configurability of everything

> >150 developers with extremely different options

Croc: Analysis (2)

„Configuration is the sequel to programming,
with unsuitable means“

> Configuring UI structure, UI behavior, workflows,
business and validation rules, reports and interfaces

> Horrible persistent data structures for both runtime
and configuration data

> Some configuration stored in various XML formats

Croc: Analysis (3)
> Few key tables with 500-700 columns (!!) each.

> Stores complete application state -
including cursor position.

„Clean“
Code

XML
Configuration

DB

Legend:

COTSCode
Table-1

Table-2Table-3

Table-4

Database Relational
Data

„Evaluate“ Overview

fundamental crosscutting

Legend:

issue
list

improvement
backlog

Estimate
Issue
Cost

create from

Estimate
Improvement

Cost

Estimate
in

Interval

Estimate
Feature
Value

analyse
impact

Explicit
Assumption

requires based upon

fundamental crosscutting

Legend:

issue
list

improvement
backlog

Estimate
Issue
Cost

create from

Estimate
Improvement

Cost

Estimate
in

Interval

Estimate
Feature
Value

analyse
impact

Explicit
Assumption

requires based upon

„Evaluate“ Overview

Map problems to
„business“ terms!

„Evaluate“ Concepts

Estimate

Assumption

Unit
(Measure)

Parameter

Observation

Probability

based
upon

how certain?

Correction
Factors

can
observe

require /
allow

Intervall

time,
money, etc

Subject

what do we
estimate?

tacke
uncertainty by

based
upon

Rail Transport Provider

> Heterogeneous IT landscape

> Problem areas:

> 6-12 month from initial business requirement to
production („time-to-market“)

> Stability, reliability

> Performance

Rail - aim42 Analysis

> Stakeholder Analysis + -Interviews

> yielded several problems + problem-areas

> Issue Tracker Analysis + Software Archeology

> Qualitative (ATAM-like) Analysis

> Static Code Analysis

> Development Process Analysis

Rail (1): Overview

Ticket Sales
Frontend

Cash
Management

Client
Personalization

Client
Data / Contract

User
Management

Rail
Itinerary

Vouchers

Rebate and
Reduction

Cards

Inter-European
Connections

(HAFAS)
External
Partners

Booking Office

Ticket Price
Management

Data
Warehouse

Marketing &
Sales

Campaigns

Travel Agents
API & UI

Pricing
Engine

Ticket Sales
Backend

Legend:

JavaPHPPythonC/C++

Web Server
Extensions

Pricing Data
Store

HaskellCobolSecurity
Extensions

PL/
SQL

bad!

Rail (2): Challenges

> Embrace new sales channels (mobile)

> requires (much) higher availability

> Marketing demands rapid price adjustments

Rail (4): Analysis (excerpt)

issue (problem) description problem-cost

time-to-market
6-12 month (!) from business requirement to

production

configuration of certain ticket
types crashes backend

when either end-users or sales-clerks
configure specific ticket-types (groups > 5

persons, more than one rebate reason,
border crossing or >2 train changes), several

backend processes crash

know-how drain in
development

many dissatisfied developers and business
experts leave (development) organization,

migration from internal to external
development, fix-price projects

7%#
6%#

12%#

8%#
67%#

Cost%Distribu+on%for%So/ware%%

Requirements#

Design#/#Architecture#

(ini9al)#Programming#

Integra9on#

Maintenance#

Rail (5): Evaluation (excerpt)

What‘s the (additional) cost of „heterogenity“?

1. Explicit assumptions

• Heterogenity „costs“ in all phases

• Phase effort is known

h"
p://courses.cs.vt.edu/~csonline/SE/Lessons/LifeCycle/

Rail (6)...
Co

lle
ct

ed
 ta

sk
s

in
 w

hi
ch

ad
di

tio
na

l e
ffo

rt
m

ig
ht

 o
cc

ur
..

h"p://courses.cs.vt.edu/~csonline/SE/Lessons/LifeCycle/

„Improve“ Overview

„Improve“ Practices
> Anticorruption Layer
> Assertions
> Automated-Tests
> Branch-For-Improvement
> Extract-Reusable-Component
> Front-End-Switch
> Group-Improvement-Actions
> Handle-If-Else-Chains
> Improve-Code-Layout
> Improve Logging
> Interface Segregation Principle
> Introduce Boy Scout Rule
> Introduce-Layering
> Isolate-Changes

> Keep-Data-Toss-Code
> Manage Complex Client Dependencies

With Facade
> Measure-Everything
> Never-Change-Running-System
> Never-Rewrite-Running-System
> Quality-Driven-Software-Architecture
> Refactoring
> Refactoring-Plan
> Remove-Nested-Control-Structures
> Sample-For-Improvement
> Schedule-Work
> Untangle-Code
> Use Invariants To Kill Zombies

Automated Tests
> Risk: Changes fail existing processes in prod

> Put this into numbers:

> Which processes are impacted by the new
feature's code changes?

> Estimate the hourly cost of those processes failing
in production

> Estimate the probability of each process's failure

Unit Tests

> If you don’t have any, start with new features

> Reproduce each bug as a unit test

> Write small tests

> Use self-explaining test case names

Integration Tests

> Priority: Test your API!

> cheaper than UI testing

> usually not acceptance tested

> Don’t use mocks if you’re not forced to!

> only if 3rd-party regularly blocks you

Thesis:

Logging is the most
underestimated task in IT

State of Logging

> Growing number of user transactions

> much larger log files

> log files distributed across multiple systems

> Increasing demand for real-time analysis

Information Types

> Operational data

> Actions or state of the application

> User interaction

Stakeholders

Developer
failure analysis after weeks

Operations
real-time health information

Product Owner
weekly usage reports

???
some complex daily report?

Improve Logging

> Diagnostic contexts

> Filters

> Defined log format

> Log aggregation

> CorrelationID

 Customer Story

> A well-known German bank

> Web application for customer self-service

> Customers call support hotline for failures

> Hotline shall track state of transactions

 Customer Story
Support???

Customer

Developer

 Customer Story
CorrelationID!

New CorrelationID:
B6F51C-6324-AC336-6339

CID: B
6F51C

...

CID: B6F51C... CID: B6F51C...

CID: B6F51C...
Customer

Developer

Corre...
what?

 Customer Story

Customer

Thesis:

Each piece of relevant
information is actually an event

“An event is anything that we can observe occurring
at a particular point in time.”

— Alexander Dean, Unified Log Processing, Manning

Event Streams
Taking the next step to continuous reporting

Questions?
Comments?

Dr. Gernot Starke, @gernotstarke
gernot.starke@innoq.com
http://gernotstarke.de

Alexander Heusingfeld, @goldstift
alexander.heusingfeld@innoq.com
https://www.innoq.com/en/staff/alex

innoQ Deutschland GmbH
Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

info@innoq.com

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116

www.innoq.com

Offices in:
Berlin
Darmstadt
München

