
Architecture, 
Centralization,
Autonomy

Stefan Tilkov 
stefan.tilkov@innoq.com 
@stilkov

Software Architecture Summit, 2019

@stilkov

(Software) Architecture Definitions

A system’s elements, their
relationships, and the rules
and principles that govern
their design and evolution Whatever the architect

considers important enough
to merit their attention

Decisions that you want
to be correct because they

are costly to change

@stilkov

Order
Management

Production
Planning

Billing Production Fulfillment

Domain architecture

@stilkov

Macro (technical) architecture

@stilkov

JRuby C#

Scala Groovy  
Java Clojure

@stilkov

RDBMS NoSQL
K/V

RDBMS RDBMS/DWH NoSQL 
DocDB

@stilkov

RDBMS NoSQL
K/V

RDBMS RDBMS/DWH NoSQL 
DocDB

Micro architecture

@stilkov

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

@stilkov

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

@stilkov

Why you should centralize everything

@stilkov

Why you should centralize nothing at all

@stilkov

Why autonomous teams rule

@stilkov

Why autonomous teams fail

@stilkov

If your goal is to support autonomous teams,
architecture is an essential ingredient

@stilkov

Just as it is gravely wrong to take from individuals
what they can accomplish by their own initiative
and industry and give it to the community, so also
it is an injustice and at the same time a grave evil
and disturbance of right order to assign to a
greater and higher association what lesser and
subordinate organizations can do. […] 
The supreme authority of the State ought,
therefore, to let subordinate groups handle
matters and concerns of lesser importance, which
would otherwise dissipate its efforts greatly.
Thereby the State will more freely, powerfully, and
effectively do all those things that belong to it
alone because it alone can do them: directing,
watching, urging, restraining, as occasion requires
and necessity demands.

Subsidiarity

Pope Pius XI, Encyclical Quadragesimo anno, 1931

Autonomy

Centralization

Pattern: Regulated Market

@stilkov

Context:
• …

Observation(s):
• …

Lesson(s) learned:
• …

@stilkov

Context:
• E-Commerce/Online shop (Retail)

• 100-120 developers, ~10 teams

Observation(s):
• Lack of front-end expertise led to central UI/design team,

bottleneck for development, deployment, operations, evolution

Lesson(s) learned:
• Local optimization needs can trigger centralization

• Full stack teams require full stack capabilities

@stilkov

A general lack of specific skills, combined with a
select few who have it, will sabotage any
attempt at decentralizing anything requiring it

@stilkov

Context:
• E-Commerce/Online shop (Retail)

• 100-120 developers, ~10 teams

Observation(s):
• Extremely inefficient UI integration runtime due to lack of

standardization

• Vast differences in API style, formats, documentation

Lesson(s) learned:
• Complete lack of guidance creates unproductive diversity

@stilkov

You cannot decide to not have an architecture;
if you don’t actively create it, be prepared to
deal with the one that emerges

@stilkov

There’s a fine line between diversity (that adds
value) and chaos (that doesn’t)

@stilkov

Context:
• Insurance customer portal

• 10-15 developers, 1 team

Observation(s):
• Potential for independent decisions in separated systems

(almost) never exploited

• Engineering effort spent on coordination

Lesson(s) learned:
• Premature modularization can lead to increased effort without

matching benefits

https://en.wikipedia.org/wiki/Amdahl's_law#/media/File:AmdahlsLaw.svg

@stilkov

Amdahl’s law for teams

• Threshold set by non-parallelizable part of work

• Adding more teams will not help you if you’ve reached
the threshold

@stilkov

Law of diminishing returns

• Coordination effort increases with # of people/teams

• Returns from re-use possibly far outweighed by extra
effort

@stilkov

Context:
• E-Commerce/Online shop (Retail)

• 100-120 developers, ~10 teams

Observation(s):
• Common standard micro architecture at start of project

• Gradual increase in degrees of freedom

• Increase in actual diversity of tools, languages, architecture

Lesson(s) learned:
• Increased maturity allows for less dogma/fewer rules

@stilkov

Start with a common internal (micro)
architecture, but allow for separate evolution
according to specific needs

@stilkov

Pattern: Marketing-based Governance

@stilkov

Context:
• Global logistics company

• m projects, n teams

Observation(s):
• Inside-out development of rich, multi-faceted, highly functional

platform, sophisticated tool support for developing platform
applications

• Teams resist perceived proprietary, complex, useless platform

• Ultimate decommissioning of platform after MM€ investment

Lesson(s) learned:
• Platform development as high risk activity

@stilkov

It’s difficult to get a man to
understand something when his
salary depends on his not
understanding it.

Change Resistance

Upton Sinclair, 1934

@stilkov

Sunk Cost Fallacy

@stilkov

Eating your own dog food is an excellent idea.  
If you’re a dog.

@stilkov

Context:
• Company-wide digitization effort

• 150-300 developers, 10-15 teams

Observation(s):
• Common standard platform and team to support other teams

• Standardized CI/CD pipeline & runtime platform

• Severe inefficiencies due to one-size-fits-all platform (esp. DB)

• Continuous fighting between teams and platform engineering

Lesson(s) learned:
• Platform teams can take on a significant life of their own

@stilkov

Closed organizational systems will do everything
they can to maintain themselves

@stilkov

Closing your system to external influences is a
great way to ensure it will suck, eventually

@stilkov

Context:
• E-Commerce marketplace

• 25-75 developers, 5-10 teams

Observation(s):
• Strategic decision to outsource platform to external party

(public cloud provider)

• 100% “all-in” strategy (no worries about vendor lock-in)

Lesson(s) learned:
• Significantly decreased emotional attachment to platform

• Underestimated need for platform expertise

@stilkov

Don’t fall in love with your own tools or libraries,
maintain a strictly professional relationship

@stilkov

Dreyfus model of skill acquisition
Novice Advanced

Beginner
Competence Proficient Expert

Recollection Non-
Situational Situational Situational Situational Situational

Recognition Decomposed Decomposed Holistic Holistic Holistic

Decision Analytical Analytical Analytical Intuitive Intuitive

Awareness Monitoring Monitoring Monitoring Monitoring Absorbed

Quality

Stage

@stilkov

The more experienced you are at (active and
passive) architectural governance, the less you
can do of it

@stilkov

Growing architectural maturity means less
guidance and rules are needed

Takeaways

@stilkov

1.
Autonomy is the goal
(unless you waste effort without benefit)

@stilkov

2.
Control is tempting
(unless you’re the one being controlled)

@stilkov

3.
Letting go is the hardest part
(unless everyone sees benefits)

@stilkov

4.
Decentralization must be managed
(to the degree that’s needed to keep it)

@stilkov

5.
Standardization helps
(if it’s only mandatory as an exception)

Stefan Tilkov
@stilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

@stilkov
That’s all I have.  
Thanks for listening!

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

@stilkov

www.innoq.com

OFFICES

Monheim
Berlin
Offenbach
Munich
Hamburg
Zurich

FACTS

~150 employees
Privately owned
Vendor-independent

SERVICES

Strategy & technology consulting
Digital business models
Software architecture & development
Digital platforms & infrastructures
Knowledge transfer, coaching & trainings

CLIENTS

Finance
Telecommunications
Logistics
E-commerce
Fortune 500
SMBs
Startups

