A S A ;.

Theorems for
free!

Lars Hupel
MuniHac
2020-09-11

INNOQ

gy




-

EVERYBODY GETS A THEOREM






Types in Haskell



Type basics

® type variables are lower case
¢ all types are erased

(ignoring classes for now)



What Haskell sees:
id :: a -> a



What Haskell sees:
id :: a -> a

What the runtime sees:
id :: Word -> Word



Folklore says:

The more type variables, the merrier!



data Lens s a = Lens
{ getter :: s -> a
, setter :: a ->s ->s }

type Lens s t a b =
Functor f =>
(a ->fb) ->
s >ft




More type variables!

... but why?



We can reason about types!

... but how?



Sets in mathematics



In set theory, everything1 is a set.

For example: N ={0,1,2,...}

;
almost






Functions are sets

f={(a,0),(,). .}



Types are sets

[Bool] = {True, False}
[Integer] ={...,-2,-1,0,1,2,...}
[(a.b)] = [a] x [b]

[a — b] = the set of all functions from [a] to [b]



Key insight:

There are many different interpretations of types.



Side note

Wadler's paper uses A instead of [a]. Any idea why?



Relations



Relation R between Aand B: R AX B



always have been




Types are relations

We can assign every type t a relation rel;.



Types are relations

We can assign every type t a relation rel;.

This relation will relate values of [t]: rel; € [t] x [t]



Ground types

... are identity relations

relgeor = {(True, True), (False, False)}

relinteger = {(n,n) | n € Z}



Lists

We have a relation for a.
We want to check if xs,ys : [a] are related.



Lists

We have a relation for a.
We want to check if xs,ys : [a] are related.

— xs and ys need to be the same length and pairwise related



Lists: example

Letrelyxy =(y=2-x)

r
S U
N NN
_ e

[]
[2,4]
[2,4,6]
[0,1]

X XN



Functions

When are two functions related?

When they send related inputs to related outputs.



Functions

f:a—-bandg:a— barerelated if:

Vx,y € [a]. (x,y) erel, = (fx,gy) €relp









Parametricity



The parametricity theorem

If tis a closed term of type T, then (t, t) € relr.



The parametricity theorem

If tis a closed term of type T, then (t, t) € relr.

In other words: every term is related to itself



Let's say we have a function on maps.

frobnicate :: [a] -> [a]



Let's say we have a function on maps.

frobnicate :: [a] -> [a]

(frobnicate, frobnicate) € *ﬁ

Parametricity states:



Let's say we have a function on maps.

frobnicate :: [a] -> [a]

(frobnicate, frobnicate) € *ﬁ

Parametricity states:

We can prove:

frobnicate (map g xs) = map g (frobnicate xs)



Now what?






Reasoning about types

Motto: Functions with type variables ...
¢ don't know anything

® can't do much



In practise

The second Functor law is redundant.

It is sufficient to prove that fmap id = 1id.



Free Theorems!

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]":
(a->Bool) -> [a] -> [a]
Please choose a sublanguage of Haskell:

no bottoms (hence no general recursion and no selective strictness)

inequational theorems (only relevant in a language with bottoms)

(m] hide type instantiations in the theorem presentation
The Free Theorem

forall t1,t2 in TYPES, R in REL(t1,t2)
forall p :: t1 -> Bool
forall q :: t2 -> Bool.
(forall (x, y) in R. p x = q y)
==> (forall (z, v) in WFt{[]}(R). (f p 2, F q v) in Lft{[1}(R))

The Free Theorem
with all permissable relation variables reduced to functions

forall t1,t2 in TYPES, g :: t1 -> t2.
forall p :: t1 -> Bool
forall g :: t2 -> Bool.
(forall x :: ti. p x = q (g x))
==> (forally :: [t1]. map g (F p y) = f q (map g y))




Another free theorem

A function with type (a -> b) -> [a] -> [b] is either
1. map, or

2. map with rearrangements



Restrictions

1 destroys everything2

not everything



Extensions

We have ignored classes (so far) because they complicate things.



Extensions

We have ignored classes (so far) because they complicate things.

Classes can be modelled as dictionaries with (potentially) rank-2 types



Q& A INNOQ

www.innog.com
Lars Hupel
N lars.hupel@innog.com
W @larsr_h
innoQ Deutschland GmbH innoQ Schweiz GmbH
Krischerstr. 100 Ohlauer Str. 43 Ludwigstr. 180 E Kreuzstr. 16 c/o WeWork Gewerbestr. 11 Albulastr. 55
40789 Monheim a. Rh. 10999 Berlin 63067 Offenbach 80331 Minchen  Hermannstrasse 13 CH-6330 Cham 8048 Zurich
Germany Germany Germany Germany 20095 Hamburg Switzerland Switzerland

+49 2173 3366-0 Germany +4141743 01N



LARS HUPEL

Consultant
innoQ Deutschland GmbH

Lars enjoys programming in a variety of lan-
guages, including Scala, Haskell, and Rust. He is
known as a frequent conference speaker and one
of the founders of the Typelevel initiative which
is dedicated to providing principled, type-driven
Scala libraries.



Credits

e John C. Reynolds: https://commons.wikimedia.org/w/index.php?title=File:
Reynolds_John_small. jpg&oldid=452226049, Andrej Bauer, CC-BY-SA 2.5

¢ Philip Wadler: https://commons.wikimedia.org/w/index.php?title=File:
Wadler2.JPG&oldid=262214892, Clg, CC-BY 3.0

® Function: https://commons.wikimedia.org/w/index.php?title=File:
Function_color_example_3.svg&oldid=321533277, Wvbailey, CC-BY-SA 3.0

® Free Theorems: https://free-theorems.nomeata.de/, Joachim Breitner et
al.


https://commons.wikimedia.org/w/index.php?title=File:Reynolds_John_small.jpg&oldid=452226049
https://commons.wikimedia.org/w/index.php?title=File:Reynolds_John_small.jpg&oldid=452226049
https://commons.wikimedia.org/w/index.php?title=File:Wadler2.JPG&oldid=262214892
https://commons.wikimedia.org/w/index.php?title=File:Wadler2.JPG&oldid=262214892
https://commons.wikimedia.org/w/index.php?title=File:Function_color_example_3.svg&oldid=321533277
https://commons.wikimedia.org/w/index.php?title=File:Function_color_example_3.svg&oldid=321533277
https://free-theorems.nomeata.de/

