

Theorems for free!

Lars Hupel MuniHac 2020-09-11

Types in Haskell

Type basics

- type variables are lower case
- all types are erased

(ignoring classes for now)

What Haskell sees:

id :: a -> a

366

What Haskell sees:
id :: a -> a

What the runtime sees:

id :: Word -> Word

Folklore says:	
	The more type variables, the merrier!

data Lens s a = Lens
{ getter :: s -> a
, setter :: a -> s -> s }

type Lens s t a b =
 Functor f =>
 (a -> f b) ->

s -> f t

More type variables!

... but why?

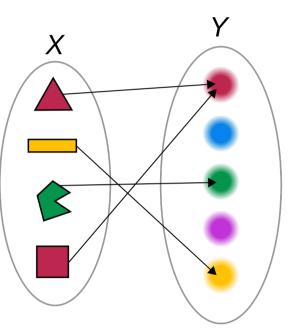
We can reason about types!

... but how?

Sets in mathematics

In set theory, everything¹ is a set.

For example: $\mathbb{N} = \{0, 1, 2, ...\}$



Functions are sets

```
f = \{(\blacktriangle, \bullet), (\blacksquare, \bullet), \ldots\}
```

Types are sets

```
[Bool] = \{True, False\}
[Integer] = \{..., -2, -1, 0, 1, 2, ...\}
[(a, b)] = [a] \times [b]
[a \rightarrow b] = \text{the set of all functions from } [a] \text{ to } [b]
```

Key insight:	There are many different interpretations of types.

Side note

Wadler's paper uses A^* instead of [a]. Any idea why?

Relations

Relation R between A and B: $R \subseteq A \times B$

Types are relations

We can assign every type t a relation rel_t .

Types are relations

We can assign every type t a relation rel_t .

This relation will relate values of [t]: rel_t \subseteq [t] \times [t]

Ground types

... are identity relations

```
rel_{Bool} = \{(True, True), (False, False)\}

rel_{Integer} = \{(n, n) \mid n \in \mathbb{Z}\}
```

Lists

We have a relation for a.

We want to check if xs, ys : [a] are related.

Lists

We have a relation for a. We want to check if xs, ys : [a] are related.

 \longrightarrow xs and ys need to be the same length and pairwise related

Lists: example

Let $rel_a x y = (y = 2 \cdot x)$

Functions

When are two functions related?

When they send related inputs to related outputs.

Functions

 $f: a \rightarrow b$ and $g: a \rightarrow b$ are related if:

$$\forall x, y \in [a]. (x, y) \in rel_a \implies (f x, g y) \in rel_b$$

Parametricity

The parametricity theorem

If t is a closed term of type T, then $(t, t) \in rel_T$.

The parametricity theorem

If t is a closed term of type T, then $(t, t) \in rel_T$.

In other words: every term is related to itself

Let's say we have a function on maps.

frobnicate :: [a] -> [a]

Let's say we have a function on maps.

frobnicate :: [a] -> [a]

Parametricity states:

 $(frobnicate, frobnicate) \in \star$

Let's say we have a function on maps.

frobnicate :: [a] -> [a]

Parametricity states:

$$(frobnicate, frobnicate) \in \star$$

We can prove:

frobnicate (map $g \times s$) = map g (frobnicate $\times s$)

Now what?

Reasoning about types

Motto: Functions with type variables ...

- don't know anything
- can't do much

In practise

The second Functor law is redundant.

It is sufficient to prove that fmap id = id.

Free Theorems!

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]":

```
(a -> Bool) -> [a] -> [a]
```

Please choose a sublanguage of Haskell:

no bottoms (hence no general recursion and no selective strictness)

.

inequational theorems (only relevant in a language with bottoms)

hide type instantiations in the theorem presentation

The Free Theorem

```
forall ti,t2 in TYPES, R in REL(ti,t2).
forall p :: t1 -> Bool.
forall q:: t2 -> Bool.
(forall (x, y) in R. p x = q y)
==> (forall (z, v) in lift{[]}{R}. (f p z, f q v) in lift{[]}{R})
```

The Free Theorem

with all permissable relation variables reduced to functions

Another free theorem

A function with type (a -> b) -> [a] -> [b] is either

- 1. map, or
- 2. map with rearrangements

Restrictions

 \perp destroys everything²

Extensions

We have ignored classes (so far) because they complicate things.

Extensions

We have ignored classes (so far) because they complicate things.

Classes can be modelled as dictionaries with (potentially) rank-2 types

Q&A

Lars Hupel

innoQ Deutschland GmhH

Krischerstr, 100 40789 Monheim a. Rh. 10999 Berlin Germany +49 2173 3366-0

Ohlguer Str. 43 Germany

Ludwigstr. 180 E 63067 Offenbach Germany

Kreuzstr, 16 80331 München Germany

c/o WeWork Hermannstrasse 13 20095 Hamburg Germany

innoQ Schweiz GmbH

Gewerbestr, 11 CH-6330 Cham Switzerland +41 41 743 01 11

Albulastr, 55 8048 Zürich Switzerland

Consultant innoQ Deutschland GmbH

Lars enjoys programming in a variety of languages, including Scala, Haskell, and Rust. He is known as a frequent conference speaker and one of the founders of the Typelevel initiative which is dedicated to providing principled, type-driven Scala libraries.

Credits

- John C. Reynolds: https://commons.wikimedia.org/w/index.php?title=File: Reynolds_John_small.jpg&oldid=452226049, Andrej Bauer, CC-BY-SA 2.5
- Philip Wadler: https://commons.wikimedia.org/w/index.php?title=File: Wadler2.JPG&oldid=262214892, Clq, CC-BY 3.0
- Function: https://commons.wikimedia.org/w/index.php?title=File:
 Function_color_example_3.svg&oldid=321533277, Wvbailey, CC-BY-SA 3.0
- Free Theorems: https://free-theorems.nomeata.de/, Joachim Breitner et al.