
Microservices:
Redundancy =

Maintainability!
Eberhard Wolff

@ewolff
Fellow
innoQ

http://continuous-delivery-buch.de/

http://microservices-buch.de/ http://microservices-book.com/

http://microservices-book.com/primer.html

FREE!!!!

Maintainablity

Redundant data

Redudant code

Legacy System

Too many dependencies

Cyclic dependencies
(dotted lines)

> COBOL, Assembler

> Not maintainable

> Not replaceable

L

> We will replace it!

> We will make it maintainable!

> It will be beautiful!

We will take good care
of the code!

Clean
Like
Spring

Clean Architecture

Developer

Developer

Result?

> Legacy System

> Java

> Not maintainable

> Not replaceable

L

> We didn’t try hard enough!

> We will replace it!

> We will make it maintainable!

> It will be beautiful!

L
I need a new job.

While there are still
developers:

Replace the legacy system.

Repeat

Insanity:
Doing the same thing
over and over again
and expecting different
results.

Albert Einstein

We can achieve
maintainability with
clean architecture +
clean code.

We can achieve
maintainability with
clean architecture +
clean code.

Clean approach tried often.

Results?

Lots of Legacy Code

…and secure jobs.

We need a different
approach!

Parnas 1972

Modules

ECommerce
System

Order

Catalog

Billing
Search

Modules by Domain

> Each domain problem solved
in one module.

> New features easy to add

Modules

> Programming language feature

> Class, package, library …

> Rather weak modules

Developer

Microservices

> Modules

> Separate deployment units

> Separate VM / process

Server Server

Micro
Service

Micro
Service

ECommerce
System

Order

Catalog

Billing
Search

Module = separate
deployment units!

ECommerce
System

Order

Catalog

Billing
Search

Module = separate
deployment units!

Communication e.g. REST

REST REST

ECommerce
System

Order

Catalog

Billing
Search

Dependencies between
systems cannot sneak in

ECommerce
System

Order

Catalog

Billing
Search

Dependencies between
systems cannot sneak in

ECommerce
System

Order

Catalog

Billing
Search

Dependencies between
systems cannot sneak in

“Architecture Firewalls”

“Architecture Firewall”
like REST
enforce the architecture

ECommerce
System

Order

Catalog

Billing
Search

Components small

ECommerce
System

Order

Catalog

Billing
Search

Components small

Hard to mess up

ECommerce
System

Order

Catalog

Billing
Search

Components small

Hard to mess up

ECommerce
System

Catalog

Billing
Search

Components small

Hard to mess up

ECommerce
System

Order

Catalog

Billing
Search

Components small

Hard to mess up
Replace if messed up.

Small,
independent deployable
modules
are recyclable.

Recycle your
software!!

How many people
are trying
to replace legacy
systems?

Replaceability
is usually no goal
for a software project.

Why??

We can achieve
maintainability with
clean architecture +
clean code

We can achieve
maintainability with
architecture firewalls +
recyclable modules

Maintainability�

Redundancy

Redundancy
Redundant data

Every information
should be stored and
updated in one place.

No redundancy for
our product data!

ECommerce
System

Products
database

ECommerce
System

Invoicing
System

Products
database

ECommerce
System

Invoicing
System

Products
database

Products
database

ECommerce
System

Products
database

Invoicing
System

ECommerce
System

Products
database

Invoicing
System

Purchase
System

ECommerce
System

Products
database

Invoicing
System

Purchase
System

Marketing
System

Products
data model?

No redundancies

High complexity

Hard to change

A central,
redundancy-free data model
is the optimum.

A central,
redundancy-free data model
is the optimum.

UBIQUITOUS
LANGUAGE

VALUE
OBJECT

ENTITY

Address

VALUE
OBJECT

ENTITYor

529 pages
Part IV
Chapter 14

A domain model
is only useful
in a Bounded Context.

There is no
universal data model
in a large system.

Let me repeat:

There is no
universal data model
in a large system.

Address
for a customer

VALUE
OBJECT

ENTITYor

Address
for calculating the

drones’ routes

VALUE
OBJECT

ENTITYor

ECommerce
System

Products

Invoicing
System

Purchase
System

Marketing
System

ECommerce
System

Invoicing
System

Purchase
System

Marketing
System

BOUNDED

CONTEXT

BOUNDED

CONTEXT

BOUNDED

CONTEXT

BOUNDED

CONTEXT

Create a model
for each BOUNDED CONTEXT.

Each BOUNDED CONTEXT
can be a Microservice
with its own database schema

Low complexity

Easy to change

i.e. easy to maintain

Few redundancies

Separate facets

ECommerce
System

Invoicing
System

Purchase
System

Marketing
System

Product:
Image

Product:
Price

Product:
Supplier

Product:
Brochure

A central,
redundancy-free data model
is the optimum.

A central,
“redundancy-free”
data model
is often hard to maintain
and wrong.

Redundancy
Redundant data �

Redundancy
Redundant code

Redundant code:
The ultimate sin
> Fix bug in many different place

> Decisions implemented in
many places

> ...and hard to change

DRY
Don’t

Repeat
Yourself

DRY Systems?
Great!

DRY between systems?
DRY is a trade-off

System System System System

common common common common

System System System System

common abstraction

Reuse:
The Holy Grail
of the nineties

So where are all the
reusable internal
frameworks?

Premature optimization,
that’s like a sneeze.
Premature abstraction
is like Ebola;
it makes my eyes bleed.

Christer Ericson

The entire history of
software engineering
is that of the
rise in levels of abstraction.

Grady Booch

Using code is hard.

Reusing code is almost
impossible.

But we are reusing Open
Source all the time!

Create an Open
Source project!

Open Source

> Good code quality

> Documentation

> Model to accept contributions

“But high quality Open Source is hard.

We just share code!”

“You only provide high quality as Open
Source…

...but for colleagues low quality is OK?”

Let’s assume it’s possible to reuse code.

Reuse is still a tradeoff.

System System System System

common common common common

System System System System

abstraction

System System System System

abstraction

Change!

System System System System

abstractionChange!

System System System System

abstractionChange!

Impact Impact Impact

System System System System

abstractionChange!

Impact Impact Impact

Now we have reuse

…and a dependency.

Dependency not just
in software!

System System System System

common abstractionChange!

Impact Impact Impact

Dependency between teams

Coordination

Meetings

Getting no real work done

L

Reuse is a tradeoff:

Reuse vs.
Independence

Independence=
Easy to change=
Maintainability

Independence is important
for self-organization.

Self-organization =
deciding yourself

Not meetings upon meetings

Deciding yourself
is only possible,
if teams and modules
are independent.

Redundancies between
systems must be avoided.

Redundancies between
systems must be avoided.

Reuse is a tradeoff:

Reuse vs.
Independence

Microservices focus

on independence

The Microservices
Manifesto ;-)

Microservices
Manifesto ;-)

We value:
Replaceability over
maintainability

Microservices
Manifesto ;-)

We value:
BOUNDED CONTEXT over
redundancy-free data

Microservices
Manifesto ;-)

We value:
Independence over
“Don’t Repeat Yourself!”

Replaceability over
maintainability

BOUNDED CONTEXT over
redundant-free data

Independence over DRY

