Technology Day 2023 / 13.11.2023

Data
Versioning

2 Rainer Jaspert
“ Senior Consultant

G ﬁ Alexander Kniesz
4« Consultant

Agenda

* Why do we care?

« What is data versioning?

 Approaches to data versioning

« Complexity of data version control .\
 Elaborating best practices A

Why do we care?

Project challenges

 Proof of Concept done with

CluePoints
« Refactoring their platform for Risk- =
Based Quality Management (RBQM) Processing medical study data
of medical study data with Data Mesh technologies
° They were using full data dUpliCGtiOn Revisiting the tech stack of a self-serve data platform

for each set of data to be analyzed

« We looked at data versioning tools
(specifically lakeFS) to support this
use case Together with our customer CluePoints, we evaluated new

technologies, tools and standards for data storage, data processing,
data versioning, and data lineage. These might become useful for

refactoring their self-serve data platform.

https://www.innog.com/en/articles/2022/10/processing-medical-study-data-with-data-mesh-technologies/

Data Mesh Architecture initiative

We are interested in the Data Mesh
approach with

What Is Data Mesh?

Domain Data as a self-serve Federated
« Design and implementation of data 7 omid Wi
products Strategic - 4 s
. . Domain-driven T e Product Thirking Dormain-agnostic. Context Mapping
. Establishing a self-serve data Design
p I d th rm Socio-techhical DU Data ﬁ*odt?iy Data Platform &w; r‘ce
. . Perspective ARA Pornan' Team Team i ﬁh\u -
Data versioning is usually needed for
rational Interoperabil rve lic @
data products rechnoogy S | TR ool R

datamesh-architecture.com

 Data versioning tools provide useful
features

The term data mesh was coined by Zhamak Dehghani (£ in 2019 and is based on four
fundamental principles that bundle well-known concepts:

The domain ownership principle mandates the domain teams to take responsibility for
their data. According to this principle, analytical data should be composed around
domains, similar to the team boundaries aligning with the system'’s bounded context.
Following the domain-driven distributed architecture, analytical and operational data
ownership is moved to the domain teams, away from the central data team.

https://www.datamesh-architecture.com/#what-is-data-mesh

 Multiple data versioning tools have
emerged in the last 10 years
. Version control systems for large data
. Data versioning tools for data lakes
. DBMS with version control

. Data versioning support in data
pipeline tools for machine learning

 Existing comparisons and

evaluations may be biased by tool
vendors

Multiple tool options

A complete overview revealing a diverse range of strengths and
weaknesses for each data versioning tool.

Best 8 Data Version Control Tools for 2023

LFS

¥4 DagsHub M » o @8D 1akers .'\/\I ‘ /\ DELTA LAKE

DDA neptune.ai Pachyderm
Open Source 1 1
License MIT Apache 2.0 Apache 2.0 MIT Apache 2.0 Nonli'éfr:’szord Non"-é?:r:gcrd Apache 2.0
Release Date 2022 2017 2018 2017 2020 2017 2014 2019
Data Format 7
Agnostic X X
Cloud/Storage -
Bt X = X
joud and storage 'y:)esyv |
Simple fo Use X X X X X X
Easy Support for ‘ A 7
y Supper X X -
,.f DagsHub

Best 8 data version control tools for 2023 (Source: DagsHub)

https://dagshub.com/blog/best-data-version-control-tools/

Non standardized terminology

Data versioning

Database versioning

Data version control (concept an tool name)
Git for data

Versioned data lake

Personal interest

Consultant at INNOQ
for 3 years.

Senior consultant at
INNOQ for more than 15

: : eqars.
~a | Master in Data Science Y

achieved while working
at a student at INNOQ.

Mostly working as a
software architect.

Strong interest in Strong interest in

machine learning and analytical data processing
automating ML (OLAP), data lakes and
pipelines (MLOps). data warehouses.

Both supporting our data mesh architecture initiative at INNOQ believing it will increase
the project opportunities in our favorite areas.

What is data
versioning?

What does a data version provide?

 The state of an entity instance as it was known at a given time
* What did we know about a clinical trial participant 6 weeks ago?
* State of patient (eg. names, date of birth, contact data, profession, previous illnesses, ...) from 1. Oct 23

¢ ...together with its specific context

* What did we additionally know about the patient’'s participation in the clinical trial?
* Data from visits already recorded at that time
* Results from physical examinations already finished by that time

« .. forallinstances (regarding to a given repository)
* What did we know about all patients 6 weeks ago?

... and the effective entity state?

* |s the state of an entity instance at a given time as known by today also provided by

a data version?
* What do we know today about the health status of a participant as it was 6 weeks ago?

 Typically no, but

* may be derived from multiple versions of the participants health status

* Yes,if
* operational system maintains the effective state. In our use case there would be a need to support
retroactive changes, eg by maintaining a bitemporal history

Data versioning features

Basic

Maintain and access multiple data
versions

Revert to a former data version

Enhanced

Create copies (forks) of a data version

Create branches to allow for separate
histories of a data version

Compare two data versions and
identify the diffs

Merge two data versions and identify
conflicts

What is data versioning needed for?

Record and reproduce Select and prepare

Approaches to data
versioning

Approaches to Data Versioning

Full duplication
* Explicitly naming and maintaining each data version

Temporal attributes

Version Control System

Temporal Attributes

 Relying on DBMS features
* Uses DB tables to maintain data versions as data records
« Uses ACID guarantees to create the sequence of data changes

 Storing historical versions of database records
» Explicitely adding a history table with valid-from-, valid-to-fields
* Or using system-versioned temporal tables (which do the same)

 Querying with ,in-between" predicates
 Mainly suitable for ,basic” data versioning features

« Often used in multidimensional modelling of Data Warehouse DBs
* Slowly Changing Dimensions — SCD Type 4

 Typically loaded through ETL- (or ELT-) Processing

Version Control System

 Relying on a metadata repository for all data versions
* Provides a unique reference for each data version
* Links to the data storage component holding the actual data

« Repository supports operations to maintain the history of data versions, eg
» checkout to retrieve a working copy of a data version
 commit to apply atomic units of change (extending the data version history)
* branch to create and work on different data version histories
* merge to combine different data version histories into one

 Suitable for all data versioning features

« Standard version control systems (svn, git, ...) do not fit well to
* large amounts of data
* binary data representations
* trace schema changes

When to use which approach?

Temporal attributes

Recording of changes
Reproducing past states

Typically used for analyses on
structured data - Online Analytical
Processing (OLAP)

Version control system

Putting together and forming data sets
for specific purposes

Collaborating on the capturing of data
Test data

Application configuration or
initialisation data

Unstructured data - binaries

Evolving Technology

 Object storage on inmutable file formats (eg. Parquet) replacing database storage
* allowing to maintain large data volumes

« Open table formats (eg. Iceberg) supporting ACID guarantees
* allowing to collaborate on data versions

 Data versioning enhancements for these file or open table formats (eg. lakeFS)

 Data pipeline tools with integrated data versioning

» allowing to easily combine versions of source and derived data sets (eg. training data and
derived ML model)

 Version control systems specifically designed for large data volumes (eg. Git LFS)

« DBMS with integrated data versioning (eg. dolt)

No more need for temporal fields?

 Data version control systems do provide good support for data analytics

* Directly refer to specific data versions
« Compare data versions on different branches

* How to deal with event data?
 New event data appears in the first data version created after event creation
* Data versioning may not be needed as event data is immutable

« Combination of facts (multidimensional modeling) with different data versions
« ,asis" vs ,as-was" analyses: Use a past dimensional context on current facts
* Predictive analyses: Use a future dimensional context on current facts

 Possible solution: Combine versioned dimensional context data with non
versioned fact data

Complexity of version
control for data

Technology Stack

Which or how well do technical components combine with a data
versioning tool
* Storage components (File system or object storage, Cloud-based or on-promises)
* File formats (parquet, avro, orc)
* Open table formats (lceberg, hudi, delta)
* Query-engines (SQL, OLAP, Spark, Map-Reduce, ...)
« Batch and/or stream-processing
 Container orchestration (kubernetes, ...)

 Technical components to be combined with data versioning tool
« Specific In-/Output-/Delete-processing (eg Spark)
« Standard Version Control System (eg git)
 Standard RDBMS for transactional state

Also to be considered

* Distributed data
 Support for schema changes
e Scalability

 Data protection
* Data removal (DSGVO)

* Integration with data processing tools

Manage data with git-like operations

WebHook
Server

https://docs.lakefs.io/understand/architecture.html

|
|
|
|
|
Web Users [lakeFS server
|
o0 I) =S O |
| 4 | \ |
. < : Web UI 1 | Authentication :
| : Authorization :
, !) N7
| | [> (@)
loakeFsS clients : I d \ I N
I
?/e_b U]l: | : Graveler ! Key Value
akect ! > APT - ! Store
Spark/lakeFSFS [- 1\ o
Pche_nt S; e : | | (Pos'tgre,SQL, Dt/namoDB)
v N
: : Storage :
Applicad:ions : I Ado‘f"‘tef '
N) =
Boto $3 Router ! - | |
Spack/S34 : = S3 gateway |---=> 1 (" \\ : i
Kofko | : ok | OLJe,Qt Store
Trino | | Hooks [Bucke't
miflow and ete | 14) (S3, 6CS, Azure)
| | — —— 1
| - - - X
[
|
|
|
|
|
|
|

Data versioning in lakeFS

dev/bar dev/Foo main
i = x Commit ded3q —>f Commit 6697
.7

4

- lmmn”%ll ORe file |,”Ne| I = .
l ______ L _____ e

—_——m e == oo oa'a D=4

Elaborate best practices

 Participate in data mesh projects ...
* Whenis it still recommendable to version data by temporal attributes?
Which data versioning tool do we prefer for typical circumstances?

Which technology stacks fit to our preferred data versioning tools?

Publish findings

 Publish our data versioning content to a new microsite or adding it to
https:/www.datamesh-architecture.com

 Have a talk about data versioning published in our INNOQ podcast series

* Onthelonger run: Working on a Data Versioning Primer

https://www.datamesh-architecture.com/

Danke! Fragen?

wﬁ‘*
y
p . L 2 '
A ‘: ﬁ "
X

Rainer Jaspert
rainer.jaspert@innog.com

Alexander Kniesz
alexander.kniesz@innog.com

Krischerstr. 100 Ohlauver Str. 43 Ludwigstr. 180E Kreuzstr. 16
40789 Monheim 10999 Berlin 63067 Offenbach 80331 MUnchen
+49 2173 3366-0

WendenstraBe 130
20573 Hamburg

Spichernstrasse 44
50672 Kéln

Q

www.innog.com

Konigstorgraben 11
90402 Nirnberg

	Titel ohne Untertitel
	Folie 1: Technology Day 2023 / 13.11.2023

	Agenda
	Folie 2: Agenda

	Inhalt
	Folie 3

	Text + Bild
	Folie 4: Project challenges
	Folie 5: Data Mesh Architecture initiative
	Folie 6: Multiple tool options
	Folie 7: Non standardized terminology
	Folie 8: Personal interest
	Folie 9
	Folie 10: What does a data version provide?
	Folie 11: … and the effective entity state?
	Folie 12: Data versioning features
	Folie 13: What is data versioning needed for?
	Folie 14
	Folie 15: Approaches to Data Versioning
	Folie 16: Temporal Attributes
	Folie 17: Version Control System
	Folie 18: When to use which approach?
	Folie 19: Evolving Technology
	Folie 20: No more need for temporal fields?
	Folie 21
	Folie 22: Technology Stack
	Folie 23: Also to be considered
	Folie 24
	Folie 25: Manage data with git-like operations
	Folie 26: Data versioning in lakeFS
	Folie 27
	Folie 28: Elaborate best practices
	Folie 29: Publish findings

	Kontakt
	Folie 30: Danke! Fragen?

