
Caching in Spring
Michael Plöd - innoQ Germany

@bitboss



I will talk about
Caching Types / Topologies 

Best Practices for Caching in Enterprise Applications 
Caching with Spring 
JCache and Spring

I will NOT talk about
Latency / Synchronization discussion 

What is the best caching product on the market 
HTTP / Database Caching 

Caching in JPA, Hibernate or other ORMs



CACHESTypes    of 

Places  for

Local Cache, Data Grid, Document 
Store, JPA First Level Cache, JPA 

Second Level Cache, Hybrid Cache

Database, Heap, HTTP Proxy, 
Browser, Prozessor, Disk, Off Heap, 

Persistence-Framework, 
Application



Business-Applications 

!= 
Twitter / Facebook & co.



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



1 Know your topology



Local In-Memory

JVM

Cache



Clustered

JVM

Cache

JVM

Cache

JVM

Cache

JVM

Cache



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



JVM

JVM

JVM

JVM

Clustered - with sync

Cache

Cache

Cache

Cache

Invalidation

Replication



2 Avoid real replication 
where possible



Cache

Cache

Cache

Cache

#1PUT 
(Insert)

PUT 
(Insert)#1

#1PUT 
(Insert)

PUT 
(Insert)

#1

Invalidation - Option 1



Cache

Cache

Cache

Cache

#1 #1

PUT 
(Update)

#1inv #1#1

Invalidation - Option 1



Cache

Cache

Cache

Cache

#1PUT 
(Insert)

PUT 
(Insert)#1

#1PUT 
(Insert)

PUT 
(Insert)#1

Invalidation - Option 2



Cache

Cache

Cache

Cache

#1#1#1#1PUT 
(Insert)

PUT 
(Update)#1

Replication



As of now every cache 
could potentially hold 

every data which 
consumes heap memory



Big Heap 

?



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



3 Avoid big heaps just for 
caching



Big heap 
leads to long 
major GCs

Application 
Data

Cache

32
 G

B 



Small 
caches are a 

bad idea! 

Many evictions, 
fewer hits, 

no „hot data“. 
 

This is especially 
critical for 

replicating caches.



4
Use a distributed 
cache for big amounts 
of data



Distributed Caches

JVM

JVM JVM

JVM

Cache Node

1

Cache Node

2

Cache Node

3



1
Customer 
#23

Customer 
#30

Customer 
#27

Customer 
#32

2



1 2
Customer 
#23

Customer 
#30

Customer 
#27

Customer 
#32

BACKUP 
#27

BACKUP 
#32

BACKUP 
#23

BACKUP 
#30

Data is being 
distributed and 

backed up



1 2
Customer 
#23

Customer 
#30

Customer 
#27

Customer 
#32

BACKUP 
#27

BACKUP 
#32

BACKUP 
#23

BACKUP 
#30

3



3

1 2
Customer 
#23

Customer 
#30

Customer 
#27

Customer 
#32

BACKUP 
#27

BACKUP 
#32

BACKUP 
#23

BACKUP 
#30

4



43

1 2
Customer 
#23

Customer 
#30

Customer 
#27

Customer 
#32

BACKUP 
#27

BACKUP 
#32

BACKUP 
#23

BACKUP 
#30



A distributed cache leads 
to smaller heaps, more 
capacity and is easy to 

scale

Application 
Data

Cache

2 
- 4

 G
B

… Cache



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



5
Make sure that only 
suitable data gets 
cached



The best cache 
candidates are read-

mostly data, which are 
expensive to obtain



If you urgently must 
cache write-intensive 

data make sure to use a 
distributed cache and not 

a replicated or 
invalidating one



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



6
Only use existing 
cache 
implementations



NEVER 
write your own 

cache 
implementation 

EVER



CACHE 
Implementations

Infinispan, EHCache, Hazelcast, 
Couchbase, Memcache, OSCache, 

SwarmCache, Xtreme Cache, 
Apache DirectMemory

Terracotta, Coherence, Gemfire, 
Cacheonix, WebSphere eXtreme 

Scale, Oracle 12c In Memory 
Database



Which data 
shall I cache?

Where shall I 
cache?

Which cache shall 
I use?

Which impact 
does it have on my 

infrastructure

How about data-
consistency

How do I 
introduce caching?

How about caching 
in Spring?



7 Mind the security gap



Application

„CRM“ „Host“ DB

SecuritySecuritySecurity

Cache
CRM Data

SAP Data

DB Data
?

Mind security when 
reading data from the 

cache



I <3 Spring 

Bot

censored

I’m at a Spring 
conference  

and this guy is 40 
slides in and 

hasn’t  
yet mentioned 

Spring  
even if he 
advertised



8 Abstract your cache 
provider



public Account retrieveAccount(String accountNumber) 
{
  Cache cache = ehCacheMgr.getCache(„accounts“);
  Account account = null;
  Element element = cache.get(accountNumber);
  if(element == null) {
    //execute some business logic for retrieval
    //account = result of logic above
    cache.put(new Element(accountNumber, account));
  } else {
    account = (Account)element.getObjectValue();
  }
  return account;
}

Tying your code to a cache provider is 
bad practice



public Account retrieveAccount(String accountNumber) 
{
  Cache cache = ehCacheMgr.getCache(„accounts“);
  Account account = null;
  Element element = cache.get(accountNumber);
  if(element == null) {
    //execute some business logic for retrieval
    //account = result of logic above
    cache.put(new Element(accountNumber, account));
  } else {
    account = (Account)element.getObjectValue();
  }
  return account;
}

Try switching from EHCache to 
Hazelcast

You will 
have to 

adjust these 
lines of code 

to the 
Hazelcast 

API



public Account retrieveAccount(String accountNumber) 
{
  Cache cache = ehCacheMgr.getCache(„accounts“);
  Account account = null;
  Element element = cache.get(accountNumber);
  if(element == null) {
    //execute some business logic for retrieval
    //account = result of logic above
    cache.put(new Element(accountNumber, account));
  } else {
    account = (Account)element.getObjectValue();
  }
  return account;
}

You can’t switch cache providers 
between environments

EHCache 
is tightly 

coupled to 
your code



public Account retrieveAccount(String accountNumber) 
{
  Cache cache = ehCacheMgr.getCache(„accounts“);
  Account account = null;
  Element element = cache.get(accountNumber);
  if(element == null) {
    //execute some business logic for retrieval
    //account = result of logic above
    cache.put(new Element(accountNumber, account));
  } else {
    account = (Account)element.getObjectValue();
  }
  return account;
}

You mess up your business logic with 
infrastructure

This is all 
caching 
related 

code 
without 

any 
business 

relevance



<cache:annotation-driven cache-manager="ehCacheManager"/>

<!-- EH Cache local -->
<bean id="ehCacheManager"  

class="org.springframework.cache.ehcache.EhCacheCacheManager"
        p:cacheManager-ref="ehcache"/>

<bean id="ehcache"  
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"
p:configLocation="/ehcache.xml"/>

@Cacheable("Customers")
public Customer getCustomer(String customerNumber) {

…
}

Introducing Spring’s cache abstraction

@Configuration  
@EnableCaching  
public class CacheConfiguration implements CachingConfigurer {
...

}



Spring’s Caching Annotations

Annotation Description

@Cacheable Demarcates cachable methods, can read and write to the 
cache(s)

@CacheEvict
Demarcates methods that perform cache eviction, that is 
methods that act as triggers for removing data from the 

cache.

@CachePut Updates the cache with the annotated method’s return value. 
Will always execute the method.

@Caching Allows multiple nested @Cacheable, @CacheEvict and 
@CachePut annotations to be used on the same method

@CacheConfig
Class-level annotation that allows to share the cache 

names, the custom KeyGenerator, the custom CacheManager and 
finally the custom CacheResolver. Does not enable caching.



Default Key Generation Strategy

@Cacheable("Customers")
public Customer getCustomer(String customerNumber) {

…
}

@Cacheable("CustomerList")
public List<Customer> listCustomers(int start, int 
count) {

…
}

@Cacheable("MonthlyReport")
public Report getMonthlyReport() {

…
}

customerNumber

SimpleKey containing 
start and count

SimpleKey.EMPTY

KeyAnnotation



public class MyOwnKeyGenerator implements KeyGenerator {

    @Override
    public Object generate(Object target, Method method, Object... params) {
        if (params.length == 0) {
            return new SimpleKey("EMPTY");

        }
        if (params.length == 1) {
            Object param = params[0];

            if (param != null && !param.getClass().isArray()) {
                return param;
            }
        }

        return new SimpleKey(params);
    }
}

You need a custom default 
KeyGenerator?

<cache:annotation-driven cache-manager="hazelcastCacheManager"  
                         keyGenerator="myOwnKeyGenerator" />



SpEL in Caching Annotations

@Cacheable("concerts", key="#location.id")
public List<Concert> findConcerts(Location location)

@Cacheable("concerts", 
key="T(someType).hash(#location)")
public List<Concert> findConcerts(Location location)

@Cacheable("concerts",  
               condition="#location.city == 'Dallas')",  
               unless="#location.outOfBusiness")
public List<Concert> findConcerts(Location location)

Key: id of location

EffectAnnotation

@CachePut("locations", key="#result.id")
public Location saveLocation(Location location)

Key: hashCode of location

Conditional Caching if Location  
is in Dallas and operating

Key: generated id of result



I have multiple Caches 
and Cache Managers!

@Cacheable("concerts", 
cacheManager="hazelCastCacheManager")
public List<Concert> findConcerts(Location location)

@Cacheable("bands", cacheManager="gemfireCacheManager"))
public List<Band> listBand(int start, int count)

@Cacheable("bands", cacheResolver="myOwnCacheResolver"))
public List<Band> listBand(int start, int count)

Programmatic resolution through an 
implementation of the CacheResolver 

Interface

Manual 
Assignment

Manual 
Assignment



public class MyOwnCacheResolver extends AbstractCacheResolver {

  @Autowired  
  public MyOwnCacheResolver(CacheManager cacheManager) {  
    super(cacheManager);  
  }  
 
  protected Collection<String> getCacheNames(CacheOperationInvocationContext<?> context) {
    return getCacheNames(context.getTarget().getClass());
  }

  private getCacheNames(Class<?> businessServiceClass) {  
    ...  
  }
}

Working with CacheResolvers

@Cacheable("bands", cacheResolver="myOwnCacheResolver"))
public List<Band> listBand(int start, int count)



You can use your own custom 
Annotations

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})
@Cacheable("concerts", key="id")
public @interface DefaultConcertCacheable {
}

@DefaultConcertCacheable
public Concert getConcert(Long id)



Spring 4.x is the first 
commerically 

supported container 
with JCache (JSR-107) 

Support!

That’s years ahead of  
any JEE Server



Spring vs JCache Annotations

Spring JCache Description

@Cacheable @CacheResult Similar, but @CacheResult can cache Exceptions and 
force method execution

@CacheEvict @CacheRemove Similar, but @CacheRemove supports eviction in the 
case of Exceptions

@CacheEvict 
      
(removeAll=true)

@CacheRemoveAll Same rules as for @CacheEvict vs @CacheRemove

@CachePut @CachePut
Different semantic: cache content must be annotated 
with @CacheValue. JCache brings Exception caching 

and caching before or after method execution

@CacheConfig @CachePut Identical



Except for the 
dependencies JCache API 

and spring-context-
support no further steps 
need to be taken to enable 

JCache Annotations in 
Spring Applications



How do I disable 
caching for Unit 

Tests?

<bean id="cacheManager" 
class="org.springframework.cache.support.CompositeCacheManager">
    <property name="cacheManagers">
        <list>
            <ref bean="guavaCache"/>
            <ref bean="ehCache"/>
        </list>
    </property>
    <property name="fallbackToNoOpCache" value="true"/>
</bean>



Spring I/O 
2016

THANK YOU!  
 

Michael Plöd 
@bitboss



THANKS 
 

Michael Plöd 
 

@bitboss 

https://slideshare.net/mploed 

https://slideshare.net/mploed

