
Develop CI/CD-pipelines
locally in TypeScript
with dagger.io

Mun i c h J S M e e t u p 2 0 2 4

FABIAN KRETZER
INNOQ.SOCIAL/@FABIAN

© dagger.io

Our journey
•Why?
• Origins
• Building blocks
• Concepts
• Example
• Future
• Opinion(s)

http://dagger.io

But why?!

Build system

CI/CD

Code

SLOW!

Instant feedback
loop

Isolation &
Collaboration &

Delivery

Knows
nothing™
about the

code

There is a gap

„Everything can be solved by an additional layer of
indirection“

- Unknown wise person

Build system

CI/CD

Code

SLOW!

Instant feedback
loop

Isolation &
Collaboration &

Delivery

Knows
nothing™
about the

code

There is a gap

Additional problem
solving layer

Instant feedback
& Isolation &

Delivery

Imperative vs. declarative
•Gradle vs. Maven vs. Jenkinsfile vs. .gitlab-ci.yml

• Its not a binary decision, but a continuum

• Reduce mental load -> Shift complexity to
different layers

• Don’t hide complexity, but establish clear
boundaries

Why – Summary
• Save interface between Build and CI

• Local development with…

• … Instant feedback loop

I don’t want to replace neither build nor CI/CD systems,
but bridge nicely between them while solving some

problems of both systems along the way.

From the people that brought you docker
The origin story

Containers
It’ about the
developer
experience

"Engine lead“ Docker project

LLBBuildKit
Low-Level
Build definition
format

„At the core of BuildKit is a Low-Level Build
definition format. <…>

<LLB> defines a content-addressable
dependency graph that can be used to put
together very complex build definitions.

It also supports features not exposed in
Dockerfiles, like direct data mounting and
nested invocation. <…>

Everything about execution and caching of
your builds is defined in LLB“

The first approachcuelang.org
Honorable
mention

- Built upon ~15 years of experience with
Google GCL

- Combine constraints from different
sources to produce a deterministic output

- Bonus: Comparing schemas for
backwards compatibility

- Limited scripting: explicitly constrained ->
converges to a valid state in finite time

https://cuelang.org/docs/about/#history

The second approachPivot
Language specific
SDKs - Arcane cuelang syntax -> adoption barrier

- „DevEx-First“ -> Let the people live where
they feel at home -> let them use their day-
to-day tools / languages

- SDKs generated from API schema

- Mental distinction between programming
language syntax and dagger concepts easier
to grasp in an environment you know well

Origins – Summary
• People with right™ mindset

• Mature foundational technologies

• Courage to do a pivot to get better DevEx

• Everything gets better if you throw container
technology at it ;-)

Success of a technology is determined by its
accessibility

The building blocks

dagger.io

Concepts
• SDKs

• GraphQL-API

• dagger engine with the DAG

http://dagger.io

Using a directed acyclic graph to our
advantage

DAG

Dependency

Engine

Host

Input /
Output

Files / Env

SDK

Graph
QL-
API

BuildKit

Caching

DAG

Dependency

Engine

Host

Input /
Output

Files / Env

SDK
(Code
gen)

Graph
QL-
API

BuildKit

Caching

Modules & Functions Module
Function Function

Module
Function Function

Concepts – Summary
• SDKs

• GraphQL-API

• Docker engine & BuildKit:

• concurrency & caching „for free“

dagger.io

Example - Lets blog!
• Build static site with goHugo

• Optimize images before deployment

• Build and (re)use dagger modules

http://dagger.io

dagger.io

The future (is now)
•More SDKs

• Cloud UI / Caching (business case)

• More Modules

• CLI-Tooling for Modules & Functions is finally
here!

• „Cross-Language-Orchestration“ is now
possible

• https://daggerverse.dev/

http://dagger.io

Opinions
•Good mixture of people, mindset, concepts and

foundational technology

• Boundary between imperative and declarative
layers is good (enough)

• Not revolutionary technology wise, but an
evolution and very clever amalgamation of
existing technologies

Getting Started!
•Getting started: https://docs.dagger.io/

• Discord: https://discord.gg/ufnyBtc8uY

• First steps: https://docs.dagger.io/quickstart/
562821/hello

• Example: https://github.com/fkretzer/mujs24

https://docs.dagger.io/
https://discord.gg/ufnyBtc8uY

Feedback?
• Used dagger.io?

• Can recommend similar / alternative tools?

• Declarative vs. imperative vs. mix of both?

• Thanks for your attention! ♥

http://dagger.io

Krischerstr. 100
40789 Monheim
+49 2173 3366-0

Ohlauer Str. 43
10999 Berlin

Ludwigstr. 180E
63067 Offenbach

Kreuzstr. 16
80331 München

Hermannstrasse 13
20095 Hamburg

Erftstr. 15-17
50672 Köln

Königstorgraben 11
90402 Nürnberg

innoQ Deutschland GmbH

www.innoq.com
Feedback? Contact!

Fabian Kretzer
fabian.kretzer@innoq.com
innoq.social/@fabian

