CQRS for Great Good
(Neue Wege mit CQRS)

Oliver Wolf

innoQ

Oliver Wolf www.innoQ.com
@owolf @innoQ

CORS

Command Query Responsibility Segregation

The default architecture for distributed business apps

<customer>
<name>John Doe</name> findCustomers()
<address>...</address> getCustomer()
updateCustomer()
</customer>
)) 4 N [)
@ S
=] N
2 LL =
E e S
— =) DB
@ &
= DTO &
v
Domain Model

The default architecture for distributed business apps

{

"'name": “John Doe”,

"address": { GET /customers?filter=...
GET /customer/{id}
} PUT /customer/{id}
}
‘ s N (O B
S S
o DTO S I
= = N
£ s >
=
P © S DB
; ;
= DTO =
\ , Domain Model
H u

The default architecture for distributed business apps

Anything wrong
with this?

Maybe not.

Scalability?

Domain Model?

“The features that characterize a
class are divided into commands and
querles A command serves to modify objects, a
query to return information about
objects.”

Bertrand Meyer
ETH Zurich

> = ., "
L
= ." A cited from: Object-Oriented Software Construction, second edition, 1997

HIL

Command Query Separation

(@) The Most

‘(®)|BJECT-ORIENTED
|

SECOND EDITION

’a

Comprehensive
Definitive 0-0
Reference Ever
Published

@ An 0-0
Tour de Force
by a Pioneer
in the Field

® co-roM Includes
Complete Hypertext]
Version of Book
AND Object-Oriented

Part of the Design-by-Contract
methodology

Development
Environment

First demonstrated in the object-oriented EIFFEL
programming language

(==
m'.
—
2
—
-
_—
-
(==
B
(===
3
—

Mutates state

class Foo {
void command();

Result query();

Returns a value without
causing side effects

Scope is a Bounded
Context

CORS

CQS in the large

Scope is a single
class

interface CustomerService {
void updateCustomer(Customer);
CustomerList findCustomers(CustomerQuery);
Customer getCustomer(ID);
void deleteCustomer(ID);

interface CustomerQueryService f{
CustomerList findCustomers(CustomerQuery);
Customer getCustomer(ID);

interface CustomerCommandService {
void updateCustomer(Customer);
void deleteCustomer(ID);

The default architecture for distributed business apps

User Interface

DTO

DTO

Remote Facade

Domain Model

ORM

DB

User Interface

DTO

DTO

[Query Facade J [Command FacadeJ K

Domain Model

ORM

DB

Yes, sorry.

The interesting thing about CQRS
IS not the pattern itself.

It’'s damn simple, actually.

But it encourages you to

challenge established

assumptions and opens up new
architectural options!

you have
learned you
must.

6

assumptions
we often take for granted

Assumption 1:
Reads and writes are strongly
cohesive, so they must be part of the
same Bounded Context.

Assumpti n1

Reads ANE me stro igly
coh ive s

art of the
wted Context.

A\ |
\
P =
\ //
\ =
=
/
///

CQRSiied
The tdefauit-architecture for distributed business apps

User Interface

DTO

DTO

[Query Facade J [Command Facade J

Domain Model

ORM

DB

CQRSiied
The tdefauit-architecture for distributed business apps

Command and query parts can scale independently, e.g. to

accommodate highly asymmetric load.

)

User Interface

DTO

DTO

-

[Command Facade }

Query Facade

N\ [)
[]
DD [
[]
L] =
[] L o
Domain Model
| —
N
4 N)
(] []

e =
H

Domain Model

ORM

DB

Assumption 2:
Reads and writes use the same data, so
they must be served from and applied
to the same domain model.

Assumpti /:
Reads and wr!

I nsy sameYlata, so
they must.h om-and applied
 tot ‘ s

_domain model.

\
\

///

2
\ /:‘/
/
=
/

CQRSiied
The tdefauit-architecture for distributed business apps

Queries can benefit from a specialized query model, optimized
for quick data retrieval (de-normalized, pre-aggregated,...)

User Interface

DTO

DTO

[Command Facade }

Query Facade

ORM

Query Model

ORM

DB

CQRSiied
The tdefauit-architecture for distributed business apps

Queries can benefit from a specialized query mQEEYSeEe
for quick data retrieval (de-normalized, pre-aggRTeYT i F1 & R e 01 e G 1L

)

User Interface

DTO

DTO

» validate and process

» guarantee ACID properties

o § » behaviour part of domain
g 0T model
E » relatively difficult to scale out
=
i Command Model I- D
~ » rich query capabilities
50 » short response times

ml » different views on data

» potentially denormalized
» relatively easy to scale out

Query Facade

Query Model

Assumption 3:
Even for queries, we have to go through the
domain model to abstract from the underlying
database model.

Assumption 3

Even for queries sl 10 got ough the
domam Mec the underlying
% “model.

/’
///

CQRSiied
The tdefauit-architecture for distributed business apps

Queries are just dealing with data, not with behaviour.
What do we need objects for?

R R - N ~
D
= []
8
L [] O
DTO =] = E
© [] o
=
2 g
o © Command Model <
[(#rhad
|5 N — [T
[=
o DB
(<b]
(/2]
= p =
) o S’
= =)
—
DTO E =
- é SELECT .. FROM .. WHERE ...
}
S = =
S =
u h

CQRSiied
The tdefauit-architecture for distributed business apps

Queries are just dealing with data, not with behaviour.
What do we need objects for?

No ORM, no fuss — just
plain SQL (SQL happens to

Introduce thin read layer be really good at queries,
that makes optimized use you know...)

of the database’s query
capabilities Command Model

)

DTO

SELECT .. FROM .. WHERE ... T

=¥

Query Facade
Thin Read Laye

Assumption 4:
We must use the same database for
queries and commands to make sure
that data Is consistent.

e \ |
/”///

Assumpti
We must u }s datab e for
‘S make sure
tlﬁl consistent.

\
A\
\

\ > ;/
/
\///

CQRSiied
The tdefauit-architecture for distributed business apps

In many cases, eventual consistency Is sufficient.
The data users are looking at in the Ul is always stale to some extent.

)) f N\ [N\
(<b)
% >
& []
DTO = mjes = DB
o) || 8
8 = Command Model
S N N
{ e
= s Events 2 | Write
2 : »ll| 2 ||| cuery
DTO S - = DB
L. (4] { e
= £ N ‘
N’ = -

SELECT .. FROM .. WHERE ...

CQRSHied
The tdefauit-architecture for distributed business apps

In many cases, eventual consistency Is sufficient.
The data users are looking at in the Ul is always stale to some extent.

— Command model —

emits events when Separate query

DB, not necessarily
relational

data changes

ORM

[

User Interface

Event handlers
process events and
update query DB
asynchronously

) *
SELECT .. FROM .. WHERE ...

Events

Event Handlerm
4
[/
[/

Assumption 5:
Commands must be processed
iImmediately to ensure data
consistency.

Assum n5

Comma »' proces sed
P —t 5 data

ency

:,//>

\ P
/
\/

CQRSiied
The tdefauit-architecture for distributed business apps

In many cases, users don’t care If their actions have immediate effect —
as long as they eventually get feedback.

)) ig /’ N [N\ [N\
3 5| & = —
CMD = o| 3 =
£ S 1 & DB
= = =0
2 Command Model
c
= = Events 2 | Write
DTO S § | & |- Qll;%ry
(&)
(9°] g =] et
D LLl
g £ — ‘
\— = -

SELECT .. FROM .. WHERE ...

CQRSHied
The tdefauit-architecture for distributed business apps

In many cases, users don’t care If their actions have immediate effect —
as long as they eventually get feedback.

User Interface

Commands

CMD

Decouple user

[Command Facade }

Give visual feedback
and allow users to

check processing
progress (and result)

L interaction and
3 @ command processing
S |
5 50
< Command Model
Events g Write =]
»| S |—» Query
T DB

<%

SELECT .. FROM ..

WHERE ...

Assumption 6:
The current state of domain objects
must be persistent.

CQRSiied
The tdefauit-architecture for distributed business apps

CQRS plays well with an Event Sourcing architecture -
you just store events and re-create the state of domain objects as needed.

)) és)
® © ®
3 E| 3
= El &
CMD = °l s | (-) B
= > || [][] o
E (7]
o —
S © < Command Model o S———
c
= = Events 2 | Write
S > S | —p ||| Query
DTO S - = DB
D LLl
= E e t
N = -

SELECT .. FROM .. WHERE ...

CQRSiied
The tdefauit-architecture for distributed business apps

Events can
always be
replayed from
event store

CQRS plays well with an Event Sourcing architecture -
you just store events and re-create the state of domain objects

) Model is
strictly in-

J
~N

CORM memory — N
GCRERe T
a

Command Model

DB holds

(b
S
o u
= events, not
E: — state
s Events % Write
§ = = — Query
DTO QS — T DB
g 3 =
> e S
LLl
\—J = *

SELECT .. FROM .. WHERE ...

Event Sourcing in a nutshell

» capture each update to application state in an event

» changes to domain objects are the result
of applying events

» events are immutable

» events are a representation of what has happened
at a specific time

What’s so great about Event Sourcing?

» allows you to rebuild application state at any point in time just by
replaying events from to up to that point in time

» allows you to analyse historic data based on detailed events that would
otherwise have been lost

» gives you an audit log “for free”

» you can add new, optimized read models (potentially in-memory) later
without migration hassle and such

How do | convince my
boss that we’ll have to

rewrite our application
with CQRS???

Chances are you don't.

CQRS is not a silver bullet and
doesn’t apply everywhere.

Beware of the added complexity!

Don’t do CQRS...

...If your application is just a simple CRUD-style app.
...If you don’t have scaling issues.

...If it doesn’t help improve your domain models.

Consider doing CQRS...

...If your write/read load ratio is highly asymmetrical.
...If scaling your application is difficult.

...If your domain model is bloated by complex domain
logic, making queries inefficient.

...If you can benefit from event sourcing.

Frameworks, any?

Axon Framework (Java)
www.axonframework.org

Lokad (.NET)
http://lokad.github.com/lokad-cqrs/

...and some more

www.axonframework.org

Apache 2 license
Version 2.0 released earlier this year
Maintained by Trifork Netherlands

Commercial support offering available

Domain

(g

Event Store

B

avents

JO{PUBH PUBWWON

avents

Messaging

Supports both state
persistence (via JPA)
and event sourcing

» File system

» JPA

» MongoDB

» Cassandra

» Redis

» Google App Engine DataStore

JO|PUBH PUBW

Distributed Event Bus, based on
» JGroup

» Disruptor

» AMQP

» Spring Integration

Joke ejeq Uiyl

Messaging

Things | like about Axon

» relatively unobtrusive, commands and events are just Java objects
» Event sourcing is not mandatory, state persistence is still supported
» Support for multiple EventBus and EventStore implementations

» Integrates nicely with Spring

» supports complex business transactions (“sagas” in DDD parlance)

Things I’m not quite sure about

» requires some familiarity with DDD terms (you should at least know what
an Aggregate is)

» Axon doesn’t try to hide CAQRS from developers — whether this good or bad
depends on experience and knowledge about CQRS

That’s all | have.
Feel free to ask me anything!

@owolf iInno Q

