INNOQ Technology Day / Online / 2023-11-13

ISAQB Advanced Level

WEBSEC

Sneak Peek

a5 Christoph Iserlohn
&P Senior Consultant

28.08.2023 26.06.2023 | 11.04.2023

Passkeys Browser Security Kl und Security
Nutzbar und sicher? Was hat der Browser je fiir uns getan? Eine Risikobewertung
e > >

CHRISTOPH ISERLOHN
FELIX SCHUMACHER

CHRISTOPH ISERLOHN LISA MARIA MORIT
SONJA SCHEUNGRAB CHRISTOPH ISER

26.01.2023

. 13.03.2023 £ Das LastPass Drama
} Firewall .
{ o —— Passwort-Manager? Na klar. Aber doch nicht so!
@ Die Wiege der falschen Sicherheit 9 ’
e
.
| T
N ' LISA MARIA MORITZ
/ 4 LISA MARIA MORITZ CHRISTOP CHRISTOPH ISERLOHN

About the iISAQB e.V.

nternational Software Architecture Qualification Board

non-profit organization founded in 2008
approx. 20 founding members from industry, consulting and education
ISAQB manages curricula

- S AQB International Software Architecture
I Qualification Board

3

About the advanced level

This course's content and structure match the standardized curriculum for
software architects of the iISAQB e.V.

More information can be found under
http://www.isagb.org/certifications/advanced-level/

International Software Architecture
Qualification Board

CPSA-A iSAQB)

Certified Professional for Software Architecture
Advanced Level

http://www.isaqb.org/certifications/advanced-level/

Agenda

IT-Security & Protection Goals
Risk Management
Security Controls

Secure Development Process, Design
Principles & Patterns

A "Birds View" on Cryptography
Applied Cryptography aka Web Basics
Attack vectors & Classifications
Infrastructure & Operations

Deriving many keys from one

K — KDF — k1 k2 k3 cos kN

Stretch/Strengthen user supplied key

(N - -

HKDF - a KDF from HMAC

RFC 5869

Step 1 (extract): k = HKDF(salt, K)

Step 2 (expand): k* = HKDF(k, CTX || N)

CTX - a string uniquely identifying an application
N — amount of derived keys

Password based KDF (PBKDF)

Deriving keys from passwords

Important:
Passwords have a very low entropy

HKDF is not applicable as derived passwords will be vulnerable to
* Dictionary attacks
 Lookup tables
 Rainbow tables
 Brute force attacks

Working with Passwords

... at Rest
Plaintext - just don't do that!

Encrypted & Integrity Protected - introduces a backdoor and requires a very high security
measures for the encryption key(s)

Hashed - Vulnerable to

* Dictionary attacks, Lookup tables, Rainbow tables
e Brute force attacks
* |dentification of users, which use same passwords

10

Algorithm Requirements

So, we need something which is resistant to:
Dictionary attacks
Lookup tables
Rainbow tables
Brute force attacks

Collision attacks
Side-Channel attacks

ldentification of users with same passwords

And does not require additional security measures and infrastructure

11

Peppered hashes

How it works:

Add a secret random string ("pepper") to the password
before hashing it

* Same pepper for all passwords

* So hashed password = H(password || pepper)

12

Salted hashes

How it works:
* Add a random string ("salt") to the password before hashing it

* Saltis unique per password

* Saltis not a secret and can be stored along the password

* So hashed password = H(password || salt)

13

And now?

Challenges with cryptographic hash functions
Cryptographic hash functions are designed to be fast

Can easily be implemented on GPUs or custom hardware (ASIC or FPGA) to
parallelize computations

Don't protect individual hashes against brute-force attacks (Blockchains)

So, we need something like:

"hash of hash of hash of hash ..." (slow - CPU intensive)
+

a lot of memory (not parallelizable - memory hard)

14

PBKDF2 - Password Based Key Derivation Function 2

Family of key derivation functions defined in PKCS#5 as

derived key = PBKDF2(random function,

password,
salt,

number of iterations,
desired key length)

Recommended by NIST and is widely used, e.g in Boxcryptor,
Django, GRUB2, MediaWiki, WPA2, and others.

15

BCrypt

Implements expensive key schedule Blowfish cipher (from 1999) as

hash = BCrypt(log,(iteration count)=cost,
salt of 16 bytes,
password [max 56 bytes])

Built for OpenBSD and used in many Linux distribution

16

SCrypt

Family of KDF developed by Colin Percival for Tarsnap (from 2009).
Defined as

derived key = scrypt(password,
salt,
work factor [(CPU / memory)?] (N),
block size (r),

parallelization [1..232-1 * r/4] (p),
desired key length)

Paper exists with formal proofs and cost estimations

17

Argon2

Multiple flavors exist:
argon?2i - focuses on side-channel attacks prevention,
argon2d - focuses on brute-force-attacks prevention and

argon2id — a combination of both. IETF defines it as the primary flavor of the
algorithm

hash = argonZ2id(password, salt, number of iterations,

memory cost, parallelization,
length of resulting hash, version)

18

Pros Cons
PBKDF2 « CPU intensive (tunable) * not memory hard
 Very mature - the algorithm itself has * can be efficiently
not been broken. implemented on GPUs and
custom hardware like
FPGASs
BCrypt CPU intensive (tunable) Password length is limited
 Mature - the algorithm itself has not * Issues with non-ASCI|
been broken. chars and \O termination
* incompatible flavors exist
 4Kb not memory hard
anymore
scrypt « CPU intensive (tunable) * there are few
* Memory hard (tunable) cryptoanalysis work
 Measures against parallelism results
Argon?2 CPU intensive (tunable) * very new - there are very

Memory hard (tunable)
Measures against parallelism
Resistance against side-channel attacks

few cryptoanalysis work
results

19

Recommended Parameters

Running time for interactive logins = T100ms
Running time for non interactive uses = 3000ms
Salt: At least 16, better 32 random bytes
Memory = 1-16 MB

20

Recommended Parameters

PBDKF2: random function=SHA-2 or SHA-3 family, iterations =>
600000, salt length >= 64-bit random string

BCrypt: cost =12 or more if possible (= 212 = 4096 iterations)
SCrypt: N =16384,r =16, p =1; higher N is better than higher p

Argon2: hash & salt length=128-bit, parallelization = 1, iterations=2,
memory = >19MB

21

Estimated hardware cost for cracking

... d password in a year

KDF/password length |6 letters |8 letters |8 chars |10 chars |40 chars |80 chars
DES CRYPT <1% <1% <1% <1% <1% <1%

MD5 <1% <1% <1% 1.1k$ 1% 1.5T$
MD5 CRYPT <1% <1% 130% 1.1M$ 1.4k$ 1.5 *10$
PBKDF2 (100ms) <1% <1% 18k$ 160M$ |200k$ 2.2*107%
BCrypt (95ms) <1% 4% 130k$ 1.2B% 1.5M$ 48B%
SCrypt (64ms) <1% 150% 4.8M$ |43BS% 52M$ 6* 107°%
PBKDF2 (5.0s) <1% 29% 920k$ |8.3B% 10M$ 11 *1078%
BCrypt (3.0s) <1% 130% 43M$ |39B% 47M$ 1.5T$
SCrypt (3.8s) $200 610k$ 19B% 175T$ 210B% 2.3 *10%3%

Colin Percival, Stronger Key Derivation via Sequential Memory-Hard Functions, https://www.tarsnap.com/scrypt/scrypt.pdf

22

Password Hash Encoding

The result of a password hash is just a hash value (raw bytes)

So how to encode?
* Remember Kerckhoff's principle
* Self descriptive

Before PHC

 Modular Crypt Format
 Other legacy schemes

After PHC
* PHC String Format

23

Modular Crypt Format (MCF)

$<id>%<content>

where
id — an identifier representing the hashing algorithm/scheme

content — content of the scheme [a-zA-Z0-9./]. Can be structured as well

Example
$5$5QEDek12fCb8Hw.6U (5 stands for sha-256)

24

Modular Crypt Format (MCF)

Ambigous, thus not portable
Ad-Hoc

Shouldn't be used

25

PHC Encoding

A well-defined and self-describing subset of the Modular Crypt Format
$<id>[$<param>=<value>(,<param>=<value>)*][$<salt>[$<hash>]]

where
id - an identifier representing the hashing algorithm
param — parameter name and its value, like rounds/iterations count, etc
salt: Baseb4-like encoded salt

hash: Baseb4-like encoded result of hashing the password and salt

26

PHC Encoding

$pbkdf2-sha256$c=2000,dklen=256$u0OwWP2QsXQ/YWncz9sHtKXAjhUOMSGR2PffFP2wgORN4$KY2XI5CYOVOPi49PO0I5x/8TeabYS/WOHNXOXojJVd38

Function Parameters Salt Hash output
PKDF2 Cost: 2000 Baseb4-encoded Baseb4-encoded
with Key Length: 256
SHA-256

27

https://haveibeenpwned.com/ 28

Questions? Answers! Q

Christoph Iserlohn
christoph.iserlohn@innog.com

WWW.innog.com

@ci@innog.social
Krischerstr. 100 Ohlauer Str. 43 Ludwigstr. 180E Kreuzstr. 16 Hermannstrasse 13 Erftstr. 15-17 Konigstorgraben 11
40789 Monheim 10999 Berlin 63067 Offenbach 80331 MUnchen 20095 Hamburg 50672 Koln 20402 NUrnberg

+49 2173 3366-0

