
I N N O Q T e c h n o l o g y D a y / O n l i n e / 2 0 2 3 - 1 1 - 1 3

iSAQB Advanced Level

WEBSEC
Sneak Peek

Christoph Iserlohn
Senior Consultant

About the iSAQB e.V.

3

International Software Architecture Qualification Board
• non-profit organization founded in 2008
• approx. 20 founding members from industry, consulting and education
• iSAQB manages curricula

About the advanced level

4

This course’s content and structure match the standardized curriculum for
software architects of the iSAQB e.V.

More information can be found under
http://www.isaqb.org/certifications/advanced-level/

http://www.isaqb.org/certifications/advanced-level/

Agenda

5

• IT-Security & Protection Goals
• Risk Management
• Security Controls
• Secure Development Process, Design

Principles & Patterns
• A "Birds View" on Cryptography
• Applied Cryptography aka Web Basics
• Attack vectors & Classifications
• Infrastructure & Operations

Deriving many keys from one

6

KDFK k1 k2 k3 ... kN

Stretch/Strengthen user supplied key

7

KDF

pr
ob

pr
ob

HKDF – a KDF from HMAC

8

RFC 5869

Step 1 (extract): k = HKDF(salt, K)

Step 2 (expand): k* = HKDF(k, CTX || N)

CTX – a string uniquely identifying an application
N – amount of derived keys

Password based KDF (PBKDF)

9

Deriving keys from passwords

Important:
• Passwords have a very low entropy
• HKDF is not applicable as derived passwords will be vulnerable to

• Dictionary attacks
• Lookup tables
• Rainbow tables
• Brute force attacks

Working with Passwords

10

… at Rest
• Plaintext – just don't do that!

• Encrypted & Integrity Protected – introduces a backdoor and requires a very high security
measures for the encryption key(s)

• Hashed – Vulnerable to
• Dictionary attacks, Lookup tables, Rainbow tables
• Brute force attacks
• Identification of users, which use same passwords

• …

Algorithm Requirements

11

So, we need something which is resistant to:
• Dictionary attacks
• Lookup tables
• Rainbow tables
• Brute force attacks
• Collision attacks
• Side-Channel attacks
• Identification of users with same passwords

And does not require additional security measures and infrastructure

Peppered hashes

12

How it works:
• Add a secret random string ("pepper") to the password

before hashing it

• Same pepper for all passwords

• So hashed password = H(password || pepper)

Issues:
•

Brute force attacks

•
Identification of users with

same passwords

•
Pepper must be protected

Salted hashes

13

How it works:
• Add a random string ("salt") to the password before hashing it

• Salt is unique per password

• Salt is not a secret and can be stored along the password

• So hashed password = H(password || salt)

Issues:
•

Brute force attacks

And now?

14

Challenges with cryptographic hash functions
• Cryptographic hash functions are designed to be fast
• Can easily be implemented on GPUs or custom hardware (ASIC or FPGA) to

parallelize computations
• Don't protect individual hashes against brute-force attacks (Blockchains)

So, we need something like:

"hash of hash of hash of hash ..." (slow - CPU intensive)
+

a lot of memory (not parallelizable - memory hard)

PBKDF2 - Password Based Key Derivation Function 2

15

• Family of key derivation functions defined in PKCS#5 as

 derived key = PBKDF2(random function,
 password,
 salt,

 number of iterations,
 desired key length)

• Recommended by NIST and is widely used, e.g in Boxcryptor,
Django, GRUB2, MediaWiki, WPA2, and others.

BCrypt

16

• Implements expensive key schedule Blowfish cipher (from 1999) as

 hash = BCrypt(log2(iteration count)=cost,
salt of 16 bytes,

 password [max 56 bytes])

• Built for OpenBSD and used in many Linux distribution

SCrypt

17

• Family of KDF developed by Colin Percival for Tarsnap (from 2009).
Defined as

 derived key = scrypt(password,
 salt,

 work factor [(CPU / memory)2] (N),
 block size (r),

 parallelization [1..232 - 1 * r/4] (p),
 desired key length)

• Paper exists with formal proofs and cost estimations

Argon2

18

Multiple flavors exist:
• argon2i - focuses on side-channel attacks prevention,
• argon2d - focuses on brute-force-attacks prevention and
• argon2id – a combination of both. IETF defines it as the primary flavor of the

algorithm

 hash = argon2id(password, salt, number of iterations,
 memory cost, parallelization,

 length of resulting hash, version)

19

Pros Cons
PBKDF2 • CPU intensive (tunable)

• Very mature - the algorithm itself has
not been broken.

• not memory hard
• can be efficiently

implemented on GPUs and
custom hardware like
FPGAs

BCrypt • CPU intensive (tunable)
• Mature - the algorithm itself has not

been broken.

• Password length is limited
• Issues with non-ASCII

chars and \0 termination
• incompatible flavors exist
• 4Kb not memory hard

anymore
scrypt • CPU intensive (tunable)

• Memory hard (tunable)
• Measures against parallelism

• there are few
cryptoanalysis work
results

Argon2 • CPU intensive (tunable)
• Memory hard (tunable)
• Measures against parallelism
• Resistance against side-channel attacks

• very new - there are very
few cryptoanalysis work
results

Recommended Parameters

20

• Running time for interactive logins ≈ 100ms
• Running time for non interactive uses ≈ 3000ms
• Salt: At least 16, better 32 random bytes
• Memory ≈ 1-16 MB

Recommended Parameters

21

• PBDKF2: random function=SHA-2 or SHA-3 family, iterations =>
600000, salt length >= 64-bit random string

• BCrypt: cost = 12 or more if possible (= 212 = 4096 iterations)
• SCrypt: N = 16384, r = 16, p = 1; higher N is better than higher p
• Argon2: hash & salt length=128-bit, parallelization = 1, iterations=2,

memory = >19MB

Estimated hardware cost for cracking

22

… a password in a year

KDF/password length 6 letters 8 letters 8 chars 10 chars 40 chars 80 chars
DES CRYPT < 1$ < 1$ < 1$ < 1$ < 1$ < 1$
MD5 < 1$ < 1$ < 1$ 1.1k$ 1$ 1.5T$
MD5 CRYPT < 1$ < 1$ 130$ 1.1M$ 1.4k$ 1.5 * 1015$
PBKDF2 (100ms) < 1$ < 1$ 18k$ 160M$ 200k$ 2.2 * 1017$
BCrypt (95ms) < 1$ 4$ 130k$ 1.2B$ 1.5M$ 48B$
SCrypt (64ms) < 1$ 150$ 4.8M$ 43B$ 52M$ 6* 1019$
PBKDF2 (5.0s) < 1$ 29$ 920k$ 8.3B$ 10M$ 11 * 1018$
BCrypt (3.0s) < 1$ 130$ 4.3M$ 39B$ 47M$ 1.5T$
SCrypt (3.8s) $900 610k$ 19B$ 175T$ 210B$ 2.3 * 1023$

Colin Percival, Stronger Key Derivation via Sequential Memory-Hard Functions, https://www.tarsnap.com/scrypt/scrypt.pdf

Password Hash Encoding

23

• The result of a password hash is just a hash value (raw bytes)
• So how to encode?
• Remember Kerckhoff's principle
• Self descriptive

• Before PHC
• Modular Crypt Format
• Other legacy schemes

• After PHC
• PHC String Format

Modular Crypt Format (MCF)

24

$<id>$<content>

where

• id – an identifier representing the hashing algorithm/scheme

• content – content of the scheme [a-zA-Z0-9./]. Can be structured as well

Example

5QEDek12fCb8Hw.6U (5 stands for sha-256)

Modular Crypt Format (MCF)

25

• Ambigous, thus not portable
• Ad-Hoc
• Shouldn't be used

PHC Encoding

26

A well-defined and self-describing subset of the Modular Crypt Format

$<id>[$<param>=<value>(,<param>=<value>)*][$<salt>[$<hash>]]

where

• id - an identifier representing the hashing algorithm

• param – parameter name and its value, like rounds/iterations count, etc

• salt: Base64-like encoded salt

• hash: Base64-like encoded result of hashing the password and salt

PHC Encoding

27

$pbkdf2-sha256$c=2000,dklen=256$uOwP2QsXQ/YWncz9sHtKXAjhUOMSGR2PffFP2wq0RN4$KY2Xl5CY0VOPi49P0l5x/8TeabYS/WOHNX0XojJVd38

Function

PKDF2
with

SHA-256

Parameters

Cost: 2000
Key Length: 256

Salt

Base64-encoded

Hash output

Base64-encoded

28• https://haveibeenpwned.com/

www.innoq.com

Krischerstr. 100
40789 Monheim
+49 2173 3366-0

Ohlauer Str. 43
10999 Berlin

Ludwigstr. 180E
63067 Offenbach

Kreuzstr. 16
80331 München

Hermannstrasse 13
20095 Hamburg

Erftstr. 15-17
50672 Köln

Königstorgraben 11
90402 Nürnberg

innoQ Deutschland GmbH

Questions? Answers!
Christoph Iserlohn
christoph.iserlohn@innoq.com
@ci@innoq.social

