GOTO Amsterdam 2023

Practical (a.k.a.
actually useful)
architecture

Stefan Tilkov
stefan.tilkov@innoq.com
@stilkov{@innoq.social}

NNOQ

INNOQ Company Presentation | Facts & Figures

INNOQ

2 Q= Q

Founded Employees Customers Annual sales
2022
1999 175+ 300+ ~€22M

AP

SECTORS Finance | TC | Logistic | E-commerce | Fortune 500 | SME | Start-ups

M SACAC eb "/ VORWERK Bbreumnger lmobile.de

NA_S

Ten Recommendations for
pragmatic architecture work

1.
Choose your perspective(s) consciously

@stilkov{@innog.social}

General
Ledger

@stilkov{@innog.social}

m m> Catalog
A

Checkout &
Order

General
Ledger

@stilkov{@in

Domain Architecture

m m> Catalog

Checkout &

Order

@stilkov{@innog.social}

@stilkov{@innog.social}

@stilkov{@innog.social}

Ruby on Rails NodeJS
MySQL ElasticSearch

Java Java
Spring Boot s et Spring Boot

@stilkov{@innog.social}

Micro Architecture

Be aware of each architecture perspective’s focus

@stilkov{@innog.social}

2.
Explicitly architect your team setup

@stilkov{@innog.social}

m m> thalog

Checkout &

Order

@stilkov{@innog.social}

Search TPTY = Catalog

Checkout &
¢ Order

—+O
—+O
1O
—+O

@stitkov{@innog.social}

Search TPTY = Catalog

Checkout &
2 EELC Order

monm

@stitkov{@innog.social}

Team Architecture

About Team Topologies

Team Topologies is the leading approach to
organizing business and technology teams for
fast flow, providing a practical, step-by-step,
adaptive model for organizational design and
team interaction.

ORGANIZING

BUSINESS AND

TECHNOLOGY
TEAMS FOR FAST

MATTHEW SKELTON
and MANUEL PAIS

"~ =1

I\ ¥

L\ v 10

—g.-ocial}

Fundamental topologies Interaction modes

Stream-aligned team Collaboration
Enabling team X-as-a-Service
Platform team Facilitating

Complicated-subsystem team

Disagreements first:

@stilkov{@innog.social}

“"With a team-first approach, the team'’s
responsibilities are matched to the cognitive load
that the team can handle. [...] For effective
delivery and operations of modern software
systems, organizations should attempt to
minimize intrinsic cognitive load and eliminate
extraneous cognitive load altogether, leaving
more space for germane cognitive load."”

Mathew Skelton, Manuel Pais: Team Topologies

@stilkov{@innog.social}

You keep using that word.
| don't think it means what you think it means.

@stilkov{@innog.social}

“"Building and running a software system can be
achieved using only four team types. Other team
types can be actively harmful to an organization.”

Mathew Skelton, Manuel Pais: Team Topologies

@stilkov{@innog.social}

Bold statement!

@stilkov{@innog.social}

“Team interactions outside these three core
interaction modes are wasteful and indicative of
poorly chosen team responsibility boundaries and
poorly understood team purposes.”

Mathew Skelton, Manuel Pais: Team Topologies

@stilkov{@innog.social}

Another one!

@stilkov{@innog.social}

Things that are great about team topologies

Explicit team-first approach

Autonomy at the heart of value creation
Technology-agnostic

Long-lived teams instead of project thinking

Based on actual experience, research, collaboration

3.

Match your organizational setup
to your project size, context, and
culture

@stilkov{@innog.social}

Large number of
independent teams

Explicit roles

Separate arch team
Small number of P

collaborating teams Arch team sends

members to teams
Architecture board

Single team Teams send members

Some tasks are
architecture tasks

No explicit architecture
roles @stilkov{@innog.social}

4.
Don’t be afraid to decide things centrally

@stilkov{@innog.social}

Things that need to be decided centrally

What to centralize and what to leave to individual teams
Which teams exist and what their responsibilities are
Anything relevant* at the seams of more than one team

Necessary* global policies and strategic* aspects

*for appropriate values of relevant, necessary, and strategic

5.
Pick your battles wisely

@stilkov{@innog.social}

Don't do everything at once

Change programming language and development
environment

Switch from RBDMS to alternative models
Move to the cloud

Replace desktop Uls with web frontends
Introduce asynchronous messaging

Switch to microservices or whatever this year's hype might be

6.
Enforce the least viable amount
of rules, rigidly

@stilkov{@innog.social}

“If you love somebody
set them free"”

Sting

@stilkov{@innog.social}

Be careful with standardization

Standardized

Team decision

Programming Language X
Implementation frameworks & libraries X
IDE X
API standard X
Frontend stack X
Ul integration approach X
Operating environment X

Be careful with standardization

Standardized

Team decision

Programming Language X
Implementation frameworks & libraries X
IDE X
API standard X
Frontend stack X
Ul integration approach X
Operating environment X

Be careful with standardization

Standardized

Team decision

Best practice

Programming Language X X
Implementation frameworks & libraries X X
IDE X X
API standard X

Frontend stack X X
Ul integration approach X X
Operating environment X

Things you as an architect might want to enforce

nteroperability Privacy
ntegration Accessibility
Operability Security

Data analysis Compliance

7.
Balance prescriptive vs. descriptive
architecture

@stilkov{@innog.social}

A well-documented architecture, with wonderful,
up-to-date descriptions, explicit ADRs, beautiful
diagrams, consistent models, created with state-
of-the-art tools, can still be bad.

@stilkov{@innog.social}

Documenting what exists is a great start, not an
end goadl

@stilkov{@innog.social}

Good decisions will not necessarily satisfy
everyone; most decisions that do are likely bad.

@stilkov{@innog.social}

Compromising on essential aspects will likely
avoid conflicts now, but hurt really bad later

@stilkov{@innog.social}

8.
Don’t aim for perfection - iterate

@stilkov{@innog.social}

“"Changes you're starting now will co-exist with
changes that started last year and the year
before [...] If you adopt that perspective, then you
stop trying to rip up the pavement and do
something completely new, and you focus a lot
more on incremental change."

Michael Nygard - Architecture without an end state

@stilkov{@innog.social}

9.
Architect for delivery flow as much as
for runtime quality

@stilkov{@innog.social}

The quality of a system’s architecture

is inversely proportional to the number of

bottlenecks limiting its evolution, development,
and operations

@stilkov{@innog.social}

Autonomy helps speed, unmanaged chaos will
slow you down

@stilkov{@innog.social}

As an architect, your goal is to get out of the way
of the people who do the actual work

@stilkov{@innog.social}

10.
Be boring and do more with less

@stilkov{@innog.social}

Theory vs practice

In theory, architects ...

analyze quality requirements and figure out the actual
business motivation

pick a suitable development method, architecture, and
implementation technology

continuously re-evaluate whether past decisions still make
sense given updated information

In practice, ...

A reasonable software architecture for an e-commerce system, based on the
customer's preferences for React, Kafka, and Microservices, could include the

following components:

1. User interface: The user interface layer should be built using React, which is a
popular and powerful JavaScript library for building user interfaces. React can be
used to create dynamic and interactive web applications that are responsive to user
input.

2. Application layer: The application layer should be built using a microservices
architecture. Microservices are small, independently deployable services that
communicate with each other through lightweight protocols. Each microservice
should be responsible for a specific task, such as order processing, inventory
management, or payment processing.

3. Messaging layer: The messaging layer should be built using Kafka, which is a
distributed streaming platform that can handle large volumes of data in real-time.
Kafka can be used to enable communication between microservices and to process

events, such as order updates or inventory changes.

Database layer: The database layer should be designed to support a microservices
architecture. Each microservice should have its own database, which can be
optimized for its specific needs. This can improve performance and scalability, and
reduce the risk of data corruption or loss.

Security layer: The security layer should be designed to protect the e-commerce
system from malicious attacks and unauthorized access. This can include measures
such as authentication and authorization, data encryption, and secure
communication protocols.

Analytics layer: The analytics layer should be designed to provide insights into
customer behavior, sales trends, and other key performance indicators. This can

include tools such as data visualization, machine learning, and predictive analytics.

Overall, this architecture is designed to be scalable, flexible, and resilient, and can

help the e-commerce system handle large volumes of traffic and data.

@stilkov{@innog.social}

but what about data mesh?

Data Mesh is a newer architectural approach that emphasizes the decentralization of
data ownership and management, as well as the creation of cross-functional data
teams within an organization. In a Data Mesh architecture, data is treated as a product

and is owned by the teams that produce and consume it.

For an e-commerce system, a Data Mesh architecture could be applied to the data
layer. Each microservice could have its own data store, and each data store could be
owned and managed by the team responsible for that microservice. This can help to
reduce dependencies and improve autonomy, as well as improve the quality and

accuracy of the data.

In addition, Data Mesh can help to promote collaboration and communication between
different teams, which can be especially important for an e-commerce system that
involves multiple functions and stakeholders. Data Mesh can also enable faster and
more efficient data processing and analysis, which can help to improve the overall

performance and effectiveness of the system.

It's worth noting that implementing a Data Mesh architecture can be more complex
than a traditional microservices architecture, and can require additional resources and
expertise. However, for organizations that are willing to invest in the necessary tools
and processes, Data Mesh can be a powerful approach for improving data quality,

agility, and collaboration.

@innog.social}

If we think stochastic parroting is bad,
maybe we should apply that criticism to
ourselves, too

@stilkov{@innog.social}

Technology suitability

A

Market
rate

>

Actual applicability

@stilkov{@innog.social}

Company insanity

Inscmi’cyA

level

>

Money for technology consultants
@stilkov{@innog.social}

Prefer simple, straightforward solutions to overly
clever and complicated, cool approaches

@stilkov{@innog.social}

Focus innovation on the domain, not technology

@stilkov{@innog.social}

Conclusion

Architecture remains the most interesting and
fascinating area in IT because it matters. If you
get it wrong, everything breaks down - yet even if
you get it right, success is not guaranteed

@stilkov{@innog.social}

Whatever you do, consider the context and
beware of one-size-fits-all solutions

@stilkov{@innog.social}

Don’'t aim for perfection — aim for evolvability

@stilkov{@innog.social}

That's all | have Q

www.innoa.com
Stefan Tilkov
stefan.tilkov@innog.com
+49 170 471 2625
@stilkov - @stilkov@innog.social
Krischerstr. 100 Ohlauer Str. 43 Ludwigstr. 180E Kreuzstr. 16 Wendenstr. 130 Spichernstr. 44 Kdnigstorgraben 11 Gewerbestr. 11 Hardturmstr. 253
40789 Monheim 10999 Berlin 63067 Offenbach 80331 MUnchen 20537 Hamburg 50672 Kodln 90402 Nirnberg 6330 Cham 8005 Zirich

+49 2173 3366-0

