
Microservices

<3
Domain Driven Design

Michael Plöd - innoQ 
@bitboss

Disclaimer

Michael Plöd - innoQ 
@bitboss

Most of these ideas do not come from me

personally. I have to thank Eric Evans
and Vaughn Vernon for all the

inspiration / ideas. If you haven’t: go
out and get their amazing books!

D D D  
in Microservices

DDD and Microservices
are not just about

Bounded Contexts

DDD itself is not just
about Aggregates, Entities

and Services

Domain Driven Design

helps us with 
Microservices in four

areas

Strategic Design

(Internal)  
Building Blocks

Large Scale 
Structure

Destillation

Strategic Design

Strategic Design
consists of

Bounded Context

Context Map

Sh
ar
ed
 K
er
ne
l

Cu
st
om
er
 /
  

Su
pp
li
er

Co
nf
or
mi
st

An
ti
co
rr
up
ti
on
 

La
ye
r

Se
pa
ra
te
 W
ay
s

Op
en
 /
 H
os
t
 

Se
rv
ic
e

Pu
bl
is
he
d
 

La
ng
ua
ge

Strategic 
Design Bounded Context

Every sophisticated business
domain consists of a bunch  
of Bounded Contexts

Each Bounded Context
contains models and maybe
other contexts

The Bounded Context is also
a boundary for the meaning
of a given model

Strategic 
Design Bounded Context Example

Reservations

Event 
Management Badges

Customer

Name

Payment Details

Address

Company

Session Registrations

Lunch Preferences

Name

Job Description

Twitter Handle

Strategic 
Design Bounded Context Example

Reservations

Event 
Management Badges

Name

Payment Details

Adress

Company

Session Registrations

Lunch Preferences

Name

Job Description

Twitter Handle

Each Bounded Context has
its own model of a customer

This is a major enabler for
independent Microservices

Take a look at the name of
the customer? Maybe we
want some shared data?

Strategic 
Design Bounded Context Example

Personal 
Driving

Service 
Center

Car

Think about the differences in starting the car
or simple components such as ABS, ESP, engine

or infotainment

Strategic 
Design

How to identify Bounded 
ContextS?

Factors

One Team
If a Bounded Context must be managed or imple-
mented by more than one team it is probably too big
and should be split up.

Language
Models act as an Ubiquitous Language, therefore it is
necessary to draw a line between Contexts when the
project langeuage changes.

Cohesion
Take a look at your (sub-) domain and think about
which parts of that domain are strongly related or in
other words highly cohesive.

Meaningful
Model

Try to identify models that make sense and that are
meaningful in one specific context. Also think about
decoupling of models.

Strategic Design

Strategic Design
consists of

Bounded Context

Context Map

Sh
ar
ed
 K
er
ne
l

Cu
st
om
er
 /
  

Su
pp
li
er

Co
nf
or
mi
st

An
ti
co
rr
up
ti
on
 

La
ye
r

Se
pa
ra
te
 W
ay
s

Op
en
 /
 H
os
t
 

Se
rv
ic
e

Pu
bl
is
he
d
 

La
ng
ua
ge

Context MapStrategic 
Design

The Bounded Context by
itself does not deliver an
overview of the system

By introducing a Context
Map we describe the contact
between models / contexts

The Context Map is also a
great starting point for
future transformations

Strategic 
Design Context Map - Patterns

Sh
ar
ed
 K
er
ne
l

Cu
st
om
er
 /
  

Su
pp
li
er

Co
nf
or
mi
st

An
ti
co
rr
up
ti
on
 

La
ye
r

Se
pa
ra
te
 W
ay
s

Op
en
 /
 H
os
t
 

Se
rv
ic
e

Pu
bl
is
he
d
 

La
ng
ua
ge

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Two teams share a subset of the domain
model including code and maybe the
database. The shared kernel is often
refered to as the core domain.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

There is a customer / supplier
relation ship between two teams. The
downstream team is considered to be
the customer, sometimes with veto
rights.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

The downstream team conforms to the
model of the upstream team. There is
no translation of models and no
vetoing. If the upstream model is a
mess, it propagates to the downstream
model.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

The anticorruption layer is a layer
that isolates a client’s model from
another system’s model by translation.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

There is no connection between the
bounded contexts of a system. This
allows teams to find their own
solutions in their domain.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Each Bounded Context offers a defined
set of services that expose
functionality for other systems. Any
downstream system can then implement
their own integration. This is
especially useful for integration
requirements with many other systems.

Strategic 
Design Context Map - Patterns

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Published Language is quite similar to
Open / Host Service. However it goes
as far as to model a Domain as a
common language between bounded
contexts.

Strategic 
Design Context Map - Why?

Credit 
Application

Credit 
Decision

Scoring Credit 
Agency

CRM

Strategic 
Design Context Map - Why?

Credit 
Application

Credit 
Decision

Scoring Credit 
Agency

CRM

Currently we only see call
stacks

Strategic 
Design Context Map

Credit 
Application

Credit 
Decision

Scoring Credit 
Agency

CRM

U

D

D

D

D

U

U

U

C 
F

O 
H 
S

C 
U 
S

O 
H 
S

O H S

A C L

S K

S K

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Te
am

Co

mm
un

ic
at

io
n

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Te
am

Co

mm
un

ic
at

io
n

Tight Coupling /
Integration

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Te
am

Co

mm
un

ic
at

io
n

Tight Coupling /
Integration

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Te
am

Co

mm
un

ic
at

io
n

Team
independence

Tight Coupling /
Integration

Strategic 
Design and Conway’s Law

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Te
am

Co

mm
un

ic
at

io
n

Strategic 
Design Where do Context Maps help?

Strategic 
Design Where do Context Maps help?

Governance
A Context Map helps to identify governance issues
between applications and teams.

Transformation
A Context Map is an excellent starting point for future
transformations: it gives an in-depth insight into
integration aspects and subdomain / context mathesxw

Bad Models
By introducing a Context Map we get a clear view on
where and how bad models propagate through
application landscapes

Politics
By not just looking at technical integration aspects the
Context Map also helps us in seeing how teams
communicate and „play politics“.

Domain Driven Design

helps us with 
Microservices in four

areas

Strategic Design

(Internal)  
Building Blocks

Large Scale 
Structure

Destillation

Building Blocks
help designing  
the internals of 
Bounded Contexts

Aggregates

(Internal)  
Building Blocks

Entities

Value Objects

Factories

Services

Repositories

Building 
Blocks Entities

Entities represent the core
business objects of a
bounded context’s model

Each Entity has a constant
identity

Each Entity has its own
lifecycle

Customer

Credit
Application

Shipment

Building 
Blocks Value Objects

Value Objects derive their
identity from their values

Value Objects do not have
their own lifecycle, they
inherit it from Entities that
are referencing them

You should always consider
value objects for your
domain model

Color

Monetary
Amount

Customer

Building 
Blocks

Is „Customer“ an Entity or  
a Value Object

If an object can be considered an
Entity or a Value Object always
depends on the (Bounded Context)
it resides in.

Customer Example: A customer is an entity
in a CRM-like microservice but
not in a microservice that prints
badges, there we are just
interested in name, job description
and Twitter handle

Building 
Blocks Aggregates

Do not
underestimate
the power of
the Aggregate

Building 
Blocks Aggregates

<ValueObject>
SelfDisclosure

<ValueObject>
Address

<ValueObject>
RedemptionDetail

<Entity>
Loan

<Entity>
Customer

<Entity>
LoanApplicationForm

<Root Entity> <Root Entity>

Aggregates group Entities. The Root Entity is the lead in terms of
access to the object graph and lifecycle.

Building 
Blocks

Factories, Services,  
Repositories

Aggregates

Entities

Value Objects

Factories

Services

Repositories

Factories take care of Entity- /
Aggregate-Instantiations

Repositories encapsulate and
represent data access

Services implement business
logic that relates to multiple
Entities / Aggreates

Building 
Blocks

Align the internal building blocks 
along Application Services
and the Domain Model

Input
Adapter

Web

Mobile

Cloud

Messaging

Database

Document

GraphDB

Messaging

Output
Adapter

Application  
Service

Domain  
Model

Persistence
Domain Events

Domain Events

Building 
Blocks

Align the internal building blocks 
along Application Services
and the Domain Model

Input
Adapter

Web

Mobile

Cloud

Messaging

Database

Document

GraphDB

Messaging

Output
Adapter

Application  
Service

Domain  
Model

Persistence
Domain Events

Domain Events

I never heard of  
DOMAIN EVENTS

before!

„After inserting data into“

„We need to check the status of“

„When we have called System X“

„If that happens“

„After the customer has“

„Notify me if“

„When ..“

„After inserting data into“

„We need to check the status of“

„When we have called System X“

„If that happens“

„After the customer has“

„Notify me if“

„When ..“
Ubiquitous 
Language 
anyone?

! Domain Events are
something that

happened that Domain
Experts care about

!Model information
about activity in the
domain as a series of

discrete events.

Triggers of Events

Documents

Time

Applications

User Actions

Loan Details
Entered

Financial
Situation
Entered

Personal
Infromation

Entered

Application
Submitted

Credit 
Application

Scoring

Credit 
Decision

Customer

Domain Driven Design

helps us with 
Microservices in four

areas

Strategic Design

(Internal)  
Building Blocks

Large Scale 
Structure

Destillation

Large Scale Structure
helps evolving our
Microservice
landscapes

Evolving 
Order

Large Scale 
Structure

System 
Metaphor

Resposibility 
Layers

Large 
Scale 

Structure Evolving Order

Large 
Scale 

Structure Evolving Order

Job Title:  
Chief Ivory Tower Architect

Large 
Scale 

Structure Evolving Order

Job Title:  
Chief Ivory Tower Architect

Rigid Development Guidelines

Inflexible Architecture  
 
Clear rules and conventions for
everything

„I don’t need expensive
developers, I prefer cheap ones
and I do the thinking for them“

Large 
Scale 

Structure Evolving Order

Development Team

System is too complex

Let’s dumb down the system to
fit the rules 
 
We need a workaround to
undermine some rules

Sounds
familiar in a
microservice

environment?

Large 
Scale 

Structure Evolving Order

 Evolving 
Order

Let large structures evolve, don’t
overconstrain design principles

These large structures should be
applicable across bounded contexts

However there should be some
practical constraints

Large 
Scale 

Structure Responsibility Layers

Registration

Event 
Management

Badges

Mailings

Speakers

Large 
Scale 

Structure Responsibility Layers

Registration

Event 
Management

Badges
Mailings

Speakers

Each of these Microservices
is structures according to a

bounded context

Inside these context
developers have the chance

to use building blocks

However we could structure
our bounded context

according to responsibilities

Domain Driven Design

helps us with 
Microservices in four

areas

Strategic Design

(Internal)  
Building Blocks

Large Scale 
Structure

Destillation

Destillation
helps extracting
Microservices out of
an existing
monolithic
application

Destillation

Destilla- 
tion Identify the core domain

Destillation Document

Describes all the
details of the core

domain

Vision Statement

Defines what is in the
core domain and what

is not in the core
domain

Destilla- 
tion Extract subdomains

Identification of subdomain

Extraction from coreClean separation

Internal refactoring

Microservices

Domain Driven Design

Strategic Design

(Internal)  
Building Blocks

Large Scale 
Structure

Destillation

<3

THANK YOU!

<3
Michael Plöd - innoQ 

@bitboss
Shameless plug: we offer DDD trainings and consulting

