7 5 Why You Might

N Fail with

& Domain-driven

eeeeeeeeeee

Bounded Context

Bounded Context

Model i.e. Ubiquitous

Code Language

Bounds

 Usually handled by one team.
 Example: Order process, delivery process

Bounded Context

 Bounded context = module
 No other concept is so poorly understood.

Bounded Context Example

Invoicing Shipping
Process

Invoicing Tracking

VAT Delivery

Order Process

Shopping Cart

Accept order

Example Non Bounded Contexts

e Customer
* Product

* Very likely data-driven,
not domain-driven

Module

Public
Information

hangeabl
Internals

«»

Class

Public
Methods

Instance
Variables

«»

CRC Cards for Classes

Class Order Service Responsibility Accepting Orders

Collaboration

Order Repository
Invoice Service
Shipment Service
Statistics Service

Bounded Context

Code /
systems

Interfaces

«»

Bounded Context Canvas

Name Payment Core Description Processing Payments
Inbound o Outbounfl .
Communication Ubiquitous Communication

Language
Order Processing Receipt Payment P.rowder
Payment Book keeping

Order Processing

Bounded Context Canvas
Collaboration

Name Payment Core Description Proce

Outbound

Inbound

Communication Ubiquitous Communication
Language
Order Processing Receipt Payment Provider

Payment Book keeping

Order Processing

Bounded Context Canvas
Responsibilit

Name Payment Core Descriptiof Processing Payments

Inbound

.« e Communication
Communication

Ubiquitous
Language
Receipt

Payment

Payment Provider
Book keeping
Order Processing

Order Processing

BUILD MODULES BY
FUNCTIONALITY NOT DATA!

Seriously:

BUILD MODULES BY
FUNCTIONALITY NOT DATA!

Class Order Service Responsibility Accepting Orders

CRC Cards

Collaboration

for
CIasseS: Order Repository
No Data! Invoice Service

Shipment Service
Statistics Service

Name Payment Core Desciption Processing Payments
Bounded

Outbound
Inbound
Contexlt Communication :-Jb|qwtous Communication
anguage
Canvas: R gl tg Payment Provider
: Order Processing ecelp ayme .O €
No Data! Payment Book keeping

Order Processing

Bounded Context Example

Invoicing Shipping
Process

Customer e.g. billing Customer e.g. shipping
address address

Product e.g. price Product e.g. size

Order Process

Customer e.g. product
preferences

Product e.g. marketing
information

Bounded Context & Modules

 Data model internal
* |.e. hides most design decisions.
 E.g. how data is stored

 Bounded Contexts are naturally great
modules!

Probably large and hard
to change data model - is

that @ probf\?

Probably large and hard
to change data model - is
that a prob P

software-architektur.tv/shorts

RAFKA

The néw da+qbase

monolith

g_gl

https://www.youtube.com/watch?v=RCHZ60CNZvU

Migrating to
Bounded Context

State before Migration

 Modules might share data

Goal: Bounded Contexts

Invoicing
Process

Database Database

Order Process

Database

Results

* |Independent modules
* |Less coordination
 More productivity

Migration 0 OO

* Lots of effort to fully migrate
— often years

 Business value? Just better productivity?
* First step?
* Value of first step?

Domain-driven Migration “?'
¥

 The domain should drive the design.
 The domain should drive the migration.
 Where is the business value?

 Why are we doing this migration now?

Domain-driven Migration

 Might build new, separate
bounded context for new
features

Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/

Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/

#SoftwareArchitektur

Q @ewolfr 14.07.2020
(™) QOFTWAREARCHITEXTUR im STREAM

GETTING STAWTLD
HITH DOD ..

whanwuww:d&g

Jegacy. Syntems

@ feapot 34

[ebrwolff software-architektur.tv

https://software-architektur.tv/2020/07/14/folge006.html

Domain-driven Migration

* Define a core domain
 Might prioritize module
differently
— not change them

Bounded Contexts: Really the Goal?

Invoicing
Process |

Database Database

Ord rocess

Database

Domain-driven Migration

 Understanding bounded context is hard.

 Not actually implementing them is even
harder

DDD: Migration

* Ask questions:
* Why is the migration done now?

 What are the next planned changes to
the system?

 What has business given up asking for?

#SoftwareArchitektur

J - Nick Tane o« @ntcoding
LEGACY ARCATECTURE

T
Dle

with
STRATECIC Fpag
33%s
Qe,btgw é))g’{g%

software-architektur.tv

Y ebrwolff

https://software-architektur.tv/2020/08/07/folge0O11.html

Migration #

e Folge 149 - Das Strangler Fig Pattern

Folge 143 - Architektur-Migration (nicht nur) zu Microservices

Folge 99 - Sam Newman - Monolith to Microservices

Folge 11 - Nick Tune - Legacy Architecture Modernisation With Strategic Domain-Driven Design

Folge 6 - Eric Evans "Getting Started with DDD When Surrounded by Legacy Systems”

https://software-architektur.tv/tags.html#Migration

Iterations

These [domain] models are never
perfect; they evolve.

Eric Evans

A True Story ||

* Plan at start:
Migrate the system module-by-module

* Prototype to validate migration.

A True Story: The Start ||

* Project start

* Learn more about the domain
 Migration by module makes it impossible
...to improve support for business.

...to Improve automation

A True Story: Result ||

e There were other issues, too.
* Project cancelled
...and considered a failure.

Intuitive Lesson Learned

* Do more research up front!

* Be more restrict in approving projects!

 [MHO this is wrong.

®

TN\

* You will always learn about the domain!

* |.e.there will always be something wrong.

 Not just at the start.

Recommended Lesson Learned | (®

 Consider dropping the technical
validation of an architecture.

* |t might need to be changed.
* You might be too (emotionally) invested.
 Be prepared to change the architecture.
 But: don't be intentionally stupid!

Is This a Great Architecture?

Ul
Aggregation
Service

. Write
We are using all Workflow
the tactical DDD Service
pattern like
Service,

Business Logic
Repository, ... Data Service

DDD Domain-driven Design

 Software should provide business value.

 Software should support business
processes.

* Typical changes are to business logic.

 Therefore:
Let the domain drive the design!

What is Even the Domain?

Ul
Aggregation
Service

Write
Workflow
Service

Business Logic
Data Service

nDDD

DDD vs nDDD

« DDD Domain-driven Design
Domain drives the design

* nDDD Non-domain-driven Design
Something else drives the design

How to Detect nDDD

 Can you tell which domain the
architecture is for?

 Can you use the architecture for a self-
driving car or a video game?

* My experience:
Technical architecture much too common

Would you rather show / discuss
something technical or business-

related if asked for the
architecture?

Usually, I'm presented with
technical architecture diagrams.

Better

Invoicing
Process

Order Process

DDD vs nDDD

 Can the team execute the business
process the application implements?

* \When was the last time the team talked
to a user / customer?

 Can you explain the business purpose of
the application to your partner?

 How does the architecture structure the
business logic?

Why would | care?
There are requirements, right?

Domain-driven Design

 Domain-driven Design:
software should structure domain logic

« DDD's aimis to support the business as
well as possible

e So: Must understand the domain

DDD = Collaboration

Technical people can't define the
business purpose by themselves.

So: Ask & support businesspeople
Might be hard
Sometimes, you might fail

Collaborative Modeling e.g. event
storming / domain story telling can help

Conclusion

Iterations

* You will learn about the domain.
e So: Work in iterations.

Conclusion: DDD vs nDDD

 Domain-driven Design means the domain
drives the design.

* Actually learn and understand the
domain!

Send email to itn2023@ewolff.com
Slides

+ Service Mesh Primer EN

+ Microservices Primer DE / EN e ddore e il ELE
+ Microservices Recipes DE / EN AR T 1Y
+ Sample Microservices Book DE / EN E]
+ Sample Practical Microservices DE/EN

+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda

& Microservices

EMail address logged for 14 days,
wrong addressed emails handled manually

	Folie 1:
	Folie 2
	Folie 3: Bounded Context
	Folie 4: Bounded Context
	Folie 5: Bounded Context Example
	Folie 6: Example Non Bounded Contexts
	Folie 7: Module
	Folie 8: Class
	Folie 9: CRC Cards for Classes
	Folie 10: Bounded Context
	Folie 11: Bounded Context Canvas
	Folie 12: Bounded Context Canvas
	Folie 13: Bounded Context Canvas
	Folie 14
	Folie 15
	Folie 16: CRC Cards for Classes: No Data!
	Folie 17: Bounded Context Canvas: No Data!
	Folie 18: Bounded Context Example
	Folie 19: Bounded Context & Modules
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28: State before Migration
	Folie 29: Goal: Bounded Contexts
	Folie 30: Results
	Folie 31: Migration
	Folie 32: Domain-driven Migration
	Folie 33: Domain-driven Migration
	Folie 34: Domain-driven Migration
	Folie 35: Domain-driven Migration
	Folie 36
	Folie 37: Domain-driven Migration
	Folie 38: Bounded Contexts: Really the Goal?
	Folie 39: Domain-driven Migration
	Folie 41: DDD: Migration
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46: A True Story
	Folie 47: A True Story: The Start
	Folie 48: A True Story: Result
	Folie 49: Intuitive Lesson Learned
	Folie 50: Recommended Lesson Learned
	Folie 51: Is This a Great Architecture?
	Folie 52: DDD Domain-driven Design
	Folie 53: What is Even the Domain?
	Folie 54
	Folie 55: DDD vs nDDD
	Folie 56: How to Detect nDDD
	Folie 57
	Folie 58
	Folie 59: Better
	Folie 60: DDD vs nDDD
	Folie 61
	Folie 62: Domain-driven Design
	Folie 63: DDD = Collaboration
	Folie 64
	Folie 65: Iterations
	Folie 66: Conclusion: DDD vs nDDD
	Folie 67

