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Let's talk about sets



In set theory, everything1 is a set.

For example: N ={0,1,2,...}
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Functions on sets

f={(a,@),(, ).}
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Relations on sets

R = {(Maria, @), (Maria, &), ...}



Abstraction



Algorithms 101

Most algorithms are described in pseudocode.

1: procedure BELLMANKALABA(G, u, /, p)

2 forallv € V(G) do

3 I(v) « o0

4 end for

5 I(u) « O

6: > and so on ...
7: end procedure



Why pseudocode?

Pseudocode is nice because it abstracts away implementation details.
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Why pseudocode?

Pseudocode is nice because it abstracts away implementation details.

HashSet? List? Array? Sets!



Getting real

At some point, we need to implement algorithms.

How can we justify replacing abstract sets with concrete lists?



Abstraction function

« i List g — Set a

a([]) =2

a(x : xs) = {x} U a(xs)
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Abstraction function

« i List g — Seta

a([]) =2

a(x : xs) = {x} U a(xs)

Example

a([1,2]) = {1,2}
a([2,2,1]) = {1,2}



Remove the minimum
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Remove the minimum

(1,2,3) —1 5 {23}
0 b £(S) = S\ min(S)
g g o(x5) - ©

[3,|2,1] — 9 413,2]



Remove the minimum

{1,2,3} s {2,3)
0 b £(S) = S\ min(S)
g g o) = @

(3,2,1,1] —— [3,2]



Inimum

Remove the m

f(S) =S\ min(S)
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Correspondence

g i List a — List b is a valid implementation of f :: Set o — Set b
if and only if:
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g i List a — List b is a valid implementation of f :: Set o — Set b
if and only if:

e for every list xs,
¢ it holds that: a(g(xs)) = f(a(xs)).



Correspondence

g i List a — List b is a valid implementation of f :: Set o — Set b
if and only if:

e for every list xs,
¢ it holds that: a(g(xs)) = f(a(xs)).

We say that g refines f.






g refines f because related inputs are
mapped to related outputs.



Vx,y. (x,y) Ea = (gx,fy) €«



If o is injective, we can use this to
automatically define g.



Challenges

There's no free lunch.
®* How to define "Pick x € S"?
® What if a is not injective?
* What if « is partial?



Use cases

® Program refinement
® Abstract interpretation
® Parametricity
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Parametricity



Haskell folklore says:
The more type variables, the merrier!



data Lens s a = Lens
{ getter :: s -> a
, setter :: a ->s ->s }

type Lens s t a b =
Functor f =>
(a ->fb) ->
s >ft




Types are sets

[Bool] = {True, False}
[Integer] ={...,-2,-1,0,1,2,...}
[(a.b)] = [a] x [b]

[a — b] = the set of all functions from [a] to [b]



Types are relations

We can assign every type t a relation rel;.



Types are relations

We can assign every type t a relation rel;.

This relation will relate values of [t]: rel; € [t] x [t]



The parametricity theorem

If tis a closed term of type T, then (t, t) € relr.



The parametricity theorem

If tis a closed term of type T, then (t, t) € relr.

In other words: every term is related to itself



Let's say we have a function on lists.

frobnicate :: List a -> List a
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(frobnicate, frobnicate) € *ﬁ

Parametricity states:



Let's say we have a function on lists.

frobnicate :: List a -> List a

(frobnicate, frobnicate) € *ﬁ

Parametricity states:

We can prove:

frobnicate (map g xs) = map g (frobnicate xs)



Now what?






Reasoning about types

Motto: Functions with type variables ...
¢ don't know anything

® can't do much



In practise

The second Functor law is redundant.

It is sufficient to prove that fmap id = 1id.



Free Theorems!

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]":
(a->Bool) -> [a] -> [a]
Please choose a sublanguage of Haskell:

no bottoms (hence no general recursion and no selective strictness)

inequational theorems (only relevant in a language with bottoms)

(m] hide type instantiations in the theorem presentation
The Free Theorem

forall t1,t2 in TYPES, R in REL(t1,t2)
forall p :: t1 -> Bool
forall q :: t2 -> Bool.
(forall (x, y) in R. p x = q y)
==> (forall (z, v) in WFt{[]}(R). (f p 2, F q v) in Lft{[1}(R))

The Free Theorem
with all permissable relation variables reduced to functions

forall t1,t2 in TYPES, g :: t1 -> t2.
forall p :: t1 -> Bool
forall g :: t2 -> Bool.
(forall x :: ti. p x = q (g x))
==> (forally :: [t1]. map g (F p y) = f q (map g y))




Another free theorem

A function with type (a -> b) -> [a] -> [b] is either
1. map, or

2. map with rearrangements



Restrictions

1 destroys everything2

not everything



Extensions

We have ignored classes (so far) because they complicate things.



Extensions

We have ignored classes (so far) because they complicate things.

Classes can be modelled as dictionaries with (potentially) rank-2 types
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