L et’s just test that
real quicR

Property-based testing

in practice with Jan Stepien

JAN STEPIEN

Senior Consultant
jan.stepien@innog.com

Q

| want you to become

better at testing

Ao

%
m

double stepsPerHour(int steps, double seconds) {
return steps / (seconds * 60 * 60);

}

assertThat(stepsPerHour(1, 2), equalTo(0.5));
assertThat(stepsPerHour(2, 2), equalTo(1));
assertThat(stepsPerHour(9, 3), equalTo(9));

ITest(expected = ArithmeticException.class)
public void testZeroSeconds() {
stepsPerHour(1, 0.0);

}

[(1’ 2’ @'5)’

(2’ 2’ 1)’

(0, 3, 0)].stream().map((steps, secs, value) —> {
assertThat(stepsPerHour(steps, secs),

equalTo(value));
)F

S|lQ OO
| |

S|Q OC|OQ -
| | |

S |lQ OCQ

[(1’ 2’ @'5)’

(2’ 2’ 1)’

(0, 3, 0)].stream().map((steps, secs, value) = {
assertThat(stepsPerHour(steps, secs),

equalTo(value));
)F

(1, 2),
(2, 2),
(2, 3)].stream() .map((steps, secs) = {
assertThat (3600 * secs * stepsPerHour(steps, secs),

equalTo(steps));
F

QuickRCheck

QuickCheck:
A Lightweight Tool for Random Testing
of Haskell Programs

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

ABSTRACT

QuickCheck is a tool which aids the Haskell programmer in
formulating and testing properties of programs. Properties
are described as Haskell functions, and can be automati-
cally tested on random input, but it is also possible to de-
fine custom test data generators. We present a number of
case studies, in which the tool was successfully used, and
also point out some pitfalls to avoid. Random testing is es-
pecially suitable for functional programs because properties
can be stated at a fine grain. When a function is built from
separately tested components, then random testing suffices
to obtain good coverage of the definition under test.

1. INTRODUCTION

Testing is by far the most commonly used approach to
ensuring software quality. It is also very labour intensive,

l\fhn/\““L:“N c/\“ -, W LI\ L—\nw /\r ‘.LI\ flf\l"“’ I\c IW/\"‘L""\“I\ IJI\"I\]I\"\

John Hughes

Chalmers University of Technology
rjimh@cs.chalmers.se

monad are hard to test), and so testing can be done at a
fine grain.

A testing tool must be able to determine whether a test
is passed or failed; the human tester must supply an auto-
matically checkable criterion of doing so. We have chosen
to use formal specifications for this purpose. We have de-
signed a simple domain-specific language of testable specifi-
cations which the tester uses to define expected properties
of the functions under test. QuickCheck then checks that the
properties hold in a large number of cases. The specifica-
tion language is embedded in Haskell using the class system.
Properties are normally written in the same module as the
functions they test, where they serve also as checkable doc-
umentation of the behaviour of the code.

A testing tool must also be able to generate test cases au-
tomatically. We have chosen the simplest method, random
testing [11], which competes surprisingly favourably with
svetematic methods 1in practice However it 18 meanineoless

Jjunit-quickchecR

github.com/pholser/junit-quickcheck

JRunWith(JUnitQuickcheck.class)
public class StepsPerSecondProperties {
gProperty
void stepsProperty(int steps, double secs) {
assertThat(3600 * secs * stepsPerHour(steps, secs),
equalTo(steps));

QuickRTheories

github.com/ncredinburgh/QuickTheories

public class StepsTest {
oTest
public void stepsProp() {
qt ()
.forAl1(integers().allPositive(), doubles().any())
.checkAssert((steps, secs) —
assertThat(
3600 * secs * stepsPerHour(steps, secs),
equalTo(steps))):

Running cc.stepien.qc.StepsTest
Tests run: 1, Failures: 1, Errors: @, Skipped: @, Time elapsed: 0.5471 sec <<< FAILURE!
stepsProp(cc.stepien.qgc.StepsTest) Time elapsed: 0.426 sec <<< FAILURE!
java.lang.AssertionError: Property falsified after 1 example(s)
Smallest found falsifying value(s) :-
{1, 0.0}
Cause was :-
java.lang.AssertionError:
Expected: <1>
but: was <Nal>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:18)
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:6)
at cc.stepien.qc.StepsTest.lambda$stepsProp$@(StepsTest.java:16)

public class StepsTest {
0Test
public void stepsProp() {

qt()
.forAll(integers().allPositive(), doubles().any())

.checkAssert((steps, secs) —>
assertThat(
3600 * secs * stepsPerHour(steps, secs),
equalTo(steps))):

public class StepsTest {
oTest
public void stepsProp() {
qt ()
.forAl1(integers().allPositive(), doubles().any())
.assuming((steps, secs) —> secs != 0)
.checkAssert((steps, secs) —>
assertThat(
3600 * secs * stepsPerHour(steps, secs),
equalTo(steps))):

Running cc.stepien.qc.StepsTest
Tests run: 1, Failures: 1, Errors: @, Skipped: @, Time elapsed: 0.62 sec <<< FAILURE!
stepsProp(cc.stepien.qgc.StepsTest) Time elapsed: 0.521 sec <<< FAILURE!
java.lang.AssertionError: Property falsified after 1 example(s)
Smallest found falsifying value(s) :-
{1, 4.9E-324}
Cause was :-
java.lang.AssertionError:
Expected: <1>
but: was <Infinity>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:18)
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:6)
at cc.stepien.qc.StepsTest.lambda$stepsProp$1(StepsTest.java:17)

|

) W
ray
e(int[] ar
S
rever
int[?
}

JRunWith(JUnitQuickcheck.class)
public class ReverseProperties {
gProperty
void reverseProperty(int[] array) {

=
}

JRunWith(JUnitQuickcheck.class)
public class ReverseProperties {
gProperty
void reverseProperty(int[] array) {
assertThat(reverse(reverse(array)),
equalTo(array));

name: "Orson Welles"”,
cinematography: [
{
title: "Citizen Kane”,
year: 1941,
director: { name: "Orson Welles" },
screenwriter: { name: "Orson Welles" },
starring: [
{ name: "Orson Welles" },
{ name: "Joseph Cotten" },
{ name: "Dorothy Comingore" }

]
5
]
5

GET /hosen/lee/farbe-hellblau/40-70-euro/seite-2

’ A B

v-based testing

tice with Jan Stepien

2\
N of N .
'8 k.
-" .
L.
Ko * -
O >
“SD
¥
b

GET /hosen/lee/farbe-hellblau/40-70-euro/seite-2

GET /hosen/lee/farbe-hellblau/40-70-euro/seite-2

{
category: "pants’,
brand: "lee”,
color: "light-blue”,
page: 2

?
price: { from: 40, to: 70 }

State happens

RedisCache

RedisCache

accompanied by an oracle

RedisCache

accompanied by an oracle

java.util.HashMap

[“pUt”, “fOO”, “bar”]

| “clear”]

[“pUt”, “fOO”, ‘:1237:]

[ugetv : “fOO”]
“count” |

Testing the Hard Stuff
and Staying Sane

John Hughes

O T M

Jepsen: On the perils
of network partitions

Kyle “Aphyr” Kingsbury

| want you to become

better at testing

L et’s just test that
real quicR

with Jan Stepien
@jansteplen jan@stepien.cc

