P | il . .
LIS % T [. ["
Pl iy 4
i i . L ‘l‘ L o
{ | 1 =] R .
gt o L 3mih BB AT
\ I
1 X
PFr ‘ y

j"ll i s

.. Microservices
' Fail

\ |

Service Mesh

AL

leanpub.com/service-mesh-primer/

Eberhard Wolff A PRACTICAL GUIDE TO

Continuous
: NTIN
Delivery C OD LIy E&U S

Der pragmatische Einstieg

EBERHARD WOLFF

www.continuous-delivery-buch.de www.continuous-delivery-buch.de

Eberhard Wolff

Microservices , ,
Microservices

FINEXIBINESSI@ETWARE A RIE HIFE CTURE

EBERHARD WOLFFE

dpunkt.verlag

www.microservices-buch.de www.microservices-book.com

Eberhard Wolff Eberhard Wolff

Microservices Microservices

Ein Uberblick

Primer

A Short Overview

www.microservices-buch.de/ueberblick.html www.microservices-book.com/primer.html

Da._S Eberhard Wolff .
MIicroservices-

Praxisbuch

Grundlagen, Konzepte und Rezepte

dpunkt.verlag

www.microservices-praxisbuch.de www.practical-microservices.com

Eberhard Wolff Eberhard Wolff

Microservices Microservices

Rezepte Recipes

Technologien im Uberblick

Technology Overview

www.microservices-praxisbuch.de/rezepte.html www.practical-microservices.com/recipes.html

INNO

www.ddd-referenz.de

Eric Evans

Domain-
Driven
Design
Referenz

Definitionen & Muster

Ubersetzt von
Michael Pl&d
Christian Stettler
& Eberhard Wolff

www.domainlanguage.com/ddd/reference

e f - —ar By ¢ - -~
Y ! I‘ * ’"‘M‘&' A 37
‘1 ':‘-;“" < 5 " .

ISA

Modules

Integration &
Communication

Standardized
Operations

Macro / Micro
Architecture

Authentication
& Metadata

Standards:
Interface only

Container

Independent
Continuous
Delivery Pipeline

Resilience

ol ERRL
Y Oy .t ’t‘ a

Decoupled Decoupled Decoupled
Development Scalability Crashes

Architecture

Firewalls Replaceability

Security

Continuous
Delivery

Independent
Parts
of the Domain

Independent
Technologies

Self-
organization

Consistency Fail Safeness

New
Technologies

Operations

Deployment Monolith

* Everything deployed at once
* Opposite of microservices

* You loose extreme decoupling
... and the other benefits.

* But no microservices challenges
Valid trade-off

oA u\ "'{"’5
ol WRRRR

Data Model

“The services
need some
common model to
communicate!”

Common Data Model: Communication

« Common data model for communication only
* Might have separate internal model
* Data model = common library

* All services must use latest version of library

Common Data Model: Communication

* Change -> redeploy all services

* No decoupled deployment

* Deployment monolith with microservices challenges

Common Data Model: Communication

* Data model = events stored e.g. in Kafka
* Event sourcing
* Rebuild local state from events

* Essentially a shared database schema

Common Data Model: Communication

* Many dependencies
* Event data model hard to change
* Particularly hard: remove an attribute

* |l.e. model will keep growin

Centralized Data Model: Cure

» Use separate local data models
* No global data model for communication!
* No common data model for events!

* Specific model for each interface between microservices!

Centralized Data Model: Cure

Specific Data Model
Order & Invoicing

Specific Data
Model

Order &
Delivery

Data Model Inflation?

* Independence
vS. one model

* Trade-off

* No one single

best solution. - =

"What is resilience?"”

Flaky Systems

* A lot more chances for failure
* Many servers

* Network

* Many services

Flaky Systems

* Microservices depend on each
other.

* One failed service might make
another service fail.

* ... and that makes another fail
*...and so on.

* Just like domino pieces

Fly ruins German domino
world record attempt

A German domino team was attempting to break a
record for miniature dominoes. But a fly triggered a
premature chain reaction.

Flaky Systems: Cure

* Resilience
* Microservice continues to operate

... even if another microservice fails.

* Probably not everything still work

e.g. process orders up to some limit.

* At least provide a sensible error

... don't make callers wait forever.

Flaky Systems: Cure

* Asynchronous communication =
sensible default for failure:

Process messages later.

* What if the security service fails?

* Resilience = unauthenticated
access?

* Probably not a good idea

* Resilience is limited

""We do microservices
the Netflix way!"

Cascading Synchronous Calls

* Easy to understand

* Similar to non-distributed programing

Cascading Synchronous Calls

Synchronous Calls: Challenge

* Performance issues due to network traffic
* Latencies add up

* ... or calls have to be in parallel

* Flaky service: Hard to compensate failures

* Asynchronous resilience: Messages transferred
later, inconsistencies

Synchronous Calls: Cure

* Go async
* Quite natural if you do business events.

* Independent parts of the domain mean less
communication

"Model each domain
object as a microservice!”

Entity Service

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Entity Service

* Can easily become a centralized data model

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Entity Service

* Synchronous calls

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Entity Service

* Every call goes through three services.

* Performance

* Latency

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Entity Service

* Failure can easily propagate.

* Flaky services

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Entity Service

Order Delivery

Invoicin
Process Process 9

<

Customer Item

Service Service

Common Database

* Might be a centralized data model

* Performance / latency not an issue
* Shouldn't be flaky.

Order Delivery

Invoicin
Process Process 9

Database

Customer Customer for Customer
for Order Delivery for Invoicing

Item Item for Item for
for Order Delivery Invoicing

Entity Service: Cure

* Microservices should have their own data model =
Domain-driven Design's Bounded Context

* Might share a database ... but with separate schemas

“"Why do you need
SO many servers?
Do you have any clue
about software
architecture?”

Operations: Challenge b .

* Must be able to deploy

* ... and operate many microservices
* ... and other new technologies.
* Existing technologies might not fit

* Processes and people might not
support the challenge.

Operations: Cure

Problem well-known

Problem obvious up-front

Don't do microservices
Might be a valid trade-off

Operations: Cure "‘ .

* Install and use new technologies e
-

... only if needed.

* No technology fetish, please!

Operations: Cure

* Introduce a Paa$S
* Install Paa$S once

» Afterwards operations out of the
loop

* Marketing strategy for PaaS
* PaaS = standardization

* Kubernetes is better customizable

Operations: Cure
* Public Cloud

* Lots of technologies pre-packaged
(e.g. Kubernetes)

* Easy to automate (e.g. reboot if
machine fails)

° ... SO easier to support many
services

* Operations out of the loop

"The system is flexible and
maintainable - because we

use microservices

Bad Structure:
Deployment
Monolith

e x Y, G g S \
B ap 22 common B nterfaces B eyou P plar B startup B ranstate

Bad Structure:
Microservices

B ranstate

Bad Structure

* Microservices are just different modules.
* Microservices won't fix modularization
* Distributed Ball of Mud

Bad Structure: Challenge

Microservices' extreme decoupling becomes a problem:

* Multiple coordinated deployments

* Architecture firewalls might make bigger changes hard
* Chatty microservice cause problems for performance
... and latency

... resilience

Bad Structure: Cure

* Decouple logic

* Bounded context: Domain model per microservice
* Less communication

* Migrate by bounded context

* Don't reuse the existing structure for migration!

microservices won't help.

fix the structure.

“"Architects
will decide. The
teams are just
not up to the

challenge ()"

Organization: Challenge

* Leap of faith: Empower
teams

* If you trust people, they
behave differently.

* Dev works differently if
code goes to prod and not
QA...

Organization: Cure

* Microservices enable
independent teams

... iIndependent technologies

... iIndependent parts of the
domain

* Centralized decisions
= no independent teams

* Reduces the benefit of
microservices

"Microservices is
how you build

systems

nowadays

Fashion: Challenge

* Microservices are a trade-off

* If you don't reap the benefits ...
... You still get the challenges

* Many different architecture
possible

* Software architecture = find
the best trade-off

Fashion: Cure

* Decide about the trade-off!

* Choose other options, if
needed.

* Deployment monoliths are still
an option.

memegenerator.net

OMG

* We do microservices
... but we deploy once each quarter
... all microservices at once

... with a common technology stack

* Why do you do microservices????
* No benefits

The problem is the right trade-off.

