Testing with mutants

@janstepien

N
—
-
o
c
©
-
-]
O
O
)
e
(€b)
0
O
('
@)
—
©
=
N
@)
@)
Q\

lhre E-Ticket-BestAxrtigung

Sehr geehrte(r) Herr Stepie Buchungsreferenz:
Vielen Dank fAVr Ihre Buchung bei &2 &) &
Ticketart: E-Ticket

Sie erhalten hiermit Ihre E-Ticket-Buchungsbesti;, '4tigung. Ihr Ticket ist in unserem System
gespeichert. Sie erhalten kein Papierticket fig,zr Inre Buchung.

We write tests

lein new project

(ns project.core-test
(:require [clojure.test :refer :all]
[project.core :refer :all]))

(deftest a-test
(testing "FIXME, I fail."

(is (= 0 1))))

Generative testing

(require '[clojure.test.check
[generators :as gen]
[properties :as propll])

(def prop-sort-idempotency
(prop/for-all [coll (gen/vector gen/int)]

(= ((comp sort sort) coll)
(sort coll))))

We write tests

Who is testing our tests?

@janstepien

Mutation testing

Competent programmer
hypothesis

Coupling effect
hypothesis

Mutants which don’t
get killed become
SUrvivors

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

An Analysis and Survey of the Development of
Mutation Testing

Yue Jia Student Member, IEEE, and Mark Harman Member, IEEE

Abstract— Mutation Testing is a fault-based software testing
technique that has been widely studied for over three decades.
The literature on Mutation Testing has contributed a set of
approaches, tools, developments and empirical results. This paper
provides a comprehensive analysis and survey of Mutation Test-
ing. The paper also presents the results of several development
trend analyses. These analyses provide evidence that Mutation
Testing techniques and tools are reaching a state of maturity
and applicability, while the topic of Mutation Testing itself is the
subject of increasing interest.

Index Terms— mutation testing, survey

I. INTRODUCTION

Mutation Testing is a fault-based testing technique which pro-
vides a testing criterion called the “mutation adequacy score”. The
mutation adequacy score can be used to measure the effectiveness
of a test set in terms of its ability to detect faults.

The general principle underlying Mutation Testing work is that
the faults used by Mutation Testing represent the mistakes that
programmers often make. By carefully choosing the location and
type of mutant, we can also simulate any test adequacy criteria.
Such faults are deliberately seeded into the original program, by

cimnle cuntactic chanoece tn create a eet nf fanltv nroorame called

Besides using Mutation Testing at the software implementation
level, it has also been applied at the design level to test the
specifications or models of a program. For example, at the design
level Mutation Testing has been applied to Finite State Machines
[20], [28], [88], [111], State charts [95], [231], [260], Estelle
Specifications [222], [223], Petri Nets [86], Network protocols
[124], [202], [216], [238], Security Policies [139], [154], [165],
[166], [201] and Web Services [140], [142], [143], [193], [245],
[259].

Mutation Testing has been increasingly and widely studied
since it was first proposed in the 1970s. There has been much
research work on the various kinds of techniques seeking to
turn Mutation Testing into a practical testing approach. However,
there is little survey work in the literature on Mutation Testing.
The first survey work was conducted by DeMillo [62] in 1989.
This work summarized the background and research achievements
of Mutation Testing at this early stage of development of the
field. A survey review of the (very specific) sub area of Strong,
Weak, and Firm mutation techniques was presented by Woodward
[253], [256]. An introductory chapter on Mutation Testing can
be found in the book by Mathur [155] and also in the book
by Ammann and Offutt [11]. The most recent survey work was

Off the shelf

> Mutant for Ruby
> PIT for Java
> Stryker for JavaScript

...and many more

Mutant

Mutation testing for Clojure

@janstepien

)

)

Read all source files in a directory
Generate mutants for all top-level forms
Run the test suite for every mutant

Report all survivors

Generating mutants

[rewrite-clj "0.6.0"]

(and x vy)

(< x 1)

(empty? coll)

(defn f [a b]
(+ a b))

(or x v)

(<= x 1)

(seq coll)

(defn f [a b]
)

Reevaluating the code

[org.clojure/tools.namespace "0.2.11"]

Running tests

8 survivors out of 61 mutants

(ns mutant.mutations)
(defn- rm-args [node]
(let [sexpr (z/sexpr node)]
(if (seq? sexpr)
(let [[defn name args & more] sexpr]
(if ([-and-]{+or+} (#{'defn 'defn-} defn)
(vector? args))
(for [arg args]
(-> node z/down z/right z/right
(z/edit (partial filterv (complement #t{arg})))

(z/up))))))))

(ns mutant.internals)
(defn- dependants [graph ns]
[-(letfn [(rec [sym]
(if-let [deps (seq (dep/dependents graph sym))]
(reduce into [] (conj (mapv rec deps) deps))))]
(reverse (distinct (rec ns))))-1)

Problems

It’s slow

Do fewer, do faster,
or do smarter.

— Offutt and Untch, 2001

Do fewer

> Select what to mutate
> Select your mutation operators

> Sample your mutants

Do faster

> Don’trestart the virtual machine

> Run tests in parallel

Do smarter

> Execute only relevant tests

> Reorder the test suite

't might not terminate

> JVM cannot stop threads
> JVM cannot fork

> Starting new JVM is too slow

Mutate continuously

@janstepien

git diff master~..master

Introduce it gradually

@janstepien

[lein-mutate "0.1.0"]

github.com/jstepien/mutant

Testing with mutants

jan.stepien@innog.com
@janstepien

innoQ’

