bion testng

U conbimuows delidery pipelines

with Jan Stepien janstepien.com @)janstepien



@cljmuc



TIME FR
Al - 2 ':: P :LIGHT B AR CIONES
23456789B123456789C123456789D123456789E "

ER7004172774CF '

- 1I56780B123456789C123456789D122456789

gl - Q1777 ’ S—
156789b123456789C123456789D123456789E

17

Nk

e 56789C123456789D123456789F
rﬁﬁnnf,dn4¢n7n9512345678901234587890123458780rs
rrﬂn%mﬁﬁdﬁn7ﬂ951234567890123456789012ﬂ4597an

9A123456789B123456789C123456789D123456789E

Ad-E
(5 -
| AR

ne







lhre E-Ticket-BestArtigung

Sehr geehrte(r) Herr Stepie Buchungsreferenz:

Vielen Dank fAvr Ihre Buchung bei 4 £ el &
Ticketart: E-Ticket

Sie erhalten hiermit Ihre E-Ticket-Buchungsbesti; ztigung. Ihr Ticket ist in unserem System
gespeichert. Sie erhalten kein Papierticket fi¢, 72r Ihre Buchung.



We write tests



We write tests




Who Is testing our tests?

@janstepien is not



Mutation testing



Competent programmer
hypothesis



Coupling effect
hypothesis



Mutants which
don’t get Rilled
become survivors



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

An Analysis and Survey of the Development of
Mutation Testing

Yue Jia Student Member, IEEE, and Mark Harman Member, IEEE

Abstract— Mutation Testing is a fault-based software testing
technique that has been widely studied for over three decades.
The literature on Mutation Testing has contributed a set of
approaches, tools, developments and empirical results. This paper
provides a comprehensive analysis and survey of Mutation Test-
ing. The paper also presents the results of several development
trend analyses. These analyses provide evidence that Mutation
Testing techniques and tools are reaching a state of maturity
and applicability, while the topic of Mutation Testing itself is the
subject of increasing interest.

Index Terms— mutation testing, survey

I. INTRODUCTION

Mutation Testing 1s a fault-based testing technique which pro-
vides a testing criterion called the “mutation adequacy score”. The
mutation adequacy score can be used to measure the effectiveness
of a test set in terms of its ability to detect faults.

The general principle underlying Mutation Testing work 1s that
the faults used by Mutation Testing represent the mistakes that
programmers often make. By carefully choosing the location and
type of mutant, we can also simulate any test adequacy criteria.
Such faults are deliberately seeded into the original program, by

cimnle cuntactic chanoece ta ocreate a cet of fauilltv nrooramece called

Besides using Mutation Testing at the software implementation
level, it has also been applied at the design level to test the
specifications or models of a program. For example, at the design
level Mutation Testing has been applied to Finite State Machines
[20], [28], [88], [111], State charts [95], [231], [260], Estelle
Specifications [222], [223], Petr1 Nets [86], Network protocols
1241, [202], [216], [238], Security Policies [139], [154], [163],
(166], [201] and Web Services [140], [142], [143], [193], [245],
259].

Mutation Testing has been increasingly and widely studied
since 1t was first proposed in the 1970s. There has been much
research work on the various kinds of techniques seeking to
turn Mutation Testing into a practical testing approach. However,
there 1s little survey work in the literature on Mutation Testing.
The first survey work was conducted by DeMillo [62] in 19809.
This work summarized the background and research achievements
of Mutation Testing at this early stage of development of the
field. A survey review of the (very specific) sub area of Strong,
Weak, and Firm mutation techniques was presented by Woodward
[253], [256]. An introductory chapter on Mutation Testing can
be found in the book by Mathur [155] and also 1n the book
by Ammann and Offutt [11]. The most recent survey work was

N Y 2 a 49 TT a : |

4 £y 41 M . F . T AaAYaAaAYaY rr1



Off the shelf

Mutant Stryker PIT
for Ruby for JavaScript for Java

...and many more



Mutant. Mutation testing for Clojure
github.com/jstepien/mutant




1. Read all source files in a directory
2. Generate mutants from your code
3. Run the test suite for every mutant

4. Report all survivors



Generating mutants



X and vy X Or vy

X < 1 X <=
if (a) b else c if (a) c else b
f (a, b) { f (a, b) {
a+ D a+ b+ 1

5 5



X and vy X Or vy

X < 1 X <=
if (a) b else c if (a) c else b
f (a, b) { f (a, b) {
a+ D null

5 5



Recompiling the code



Running tests



Reporting survivors




L et’s talk about

problemms




It's slow

Do fewer, do faster,
or do smarter.

— Offutt and Untch, 2001



Do fewer

1. Select what to mutate
2. Select your mutation operators

3. Sample your mutants



Do faster

1. Don't restart the virtual machine

2. Run tests in parallel



DO smarter

1. Reorder the test suite

2. Execute only relevant tests



Mutate continuously

@)janstepien



g1t ditT master~..master



Introduce gradually

@)janstepien



(...) our 3D engine has a lot of unit tests
trying to cover as many features as possible
over more than 100k lines of code.

— Llorens Marti Garcia, IMVU, 2015



We find mutation testing to be highly valuable,
and | hope this idea can help other engineers
deliver solid, well-tested code.

— Llorens Marti Garcia, IMVU, 2015



bion testng

U conbimuows delidery pipelines

Yours continuously, jan.stepien@innog.com
Jan Stepien @janstepien



