
Mutation testing

 with Jan Stępień

in continuous delivery pipelines

janstepien.com @janstepien

@innoQ @cljmuc

We write tests

We write tests

Who is testing our tests?

@janstepien is not

Mutation testing

Competent programmer
hypothesis

Coupling effect
hypothesis

Mutants which 
don’t get killed 

become survivors

Off the shelf

…and many more

Mutant 
for Ruby

PIT 
for Java

Stryker 
for JavaScript

Mutation testing for Clojure
github.com/jstepien/mutant

servus!

Mutant.

1. Read all source files in a directory

2. Generate mutants from your code

3. Run the test suite for every mutant

4. Report all survivors

Generating mutants

x and y x or y

x < 1 x <= 1

if (a) b else c if (a) c else b

f (a, b) {
 a + b
}

f (a, b) {
 a + b + 1
}

x and y x or y

x < 1 x <= 1

if (a) b else c if (a) c else b

f (a, b) {
 a + b
}

f (a, b) {
 null
}

Recompiling the code

Running tests

Reporting survivors

Let’s talk about

problems

It’s slow
Do fewer, do faster, 

or do smarter.

— Offutt and Untch, 2001

1. Select what to mutate

2. Select your mutation operators

3. Sample your mutants

Do fewer

Do faster
1. Don’t restart the virtual machine

2. Run tests in parallel

1. Reorder the test suite

2. Execute only relevant tests

Do smarter

Mutate continuously
@janstepien

git diff master~..master

Introduce gradually
@janstepien

(…) our 3D engine has a lot of unit tests 
trying to cover as many features as possible

over more than 100k lines of code.

— Llorens Marti Garcia, IMVU, 2015

We find mutation testing to be highly valuable,
and I hope this idea can help other engineers

deliver solid, well-tested code.

— Llorens Marti Garcia, IMVU, 2015

Mutation testing

Yours continuously,
Jan Stępień

in continuous delivery pipelines

jan.stepien@innoq.com
@janstepien

