*“{‘Ei z

-

0 A AR T 2
" = A% 2 - ke

September 2020
INNOQ Technology Lunch

Functions,
Functors and
Categories

INNOQ

Images taken from unsplash.com

Ludvig Sundstrém

Consultant
INNOQ Deutschland GmbH

ludvig.sundstroem@innog.com

"Programming s*cks"

- Peter Hunt Welch

"Every programmer occasionally, when nobody's home, turns off the lights,
pours a glass of scotch, puts on some light German electronica, and opens
up a file on their computer. It's a different file for every programmer.
Sometimes they wrote it, sometimes they found it and knew they had to
save it. They read over the lines, and weep at their beauty, then the tears
turn bitter as they remember the rest of the files and the inevitable
collapse of all that is good and true in the world."

"This file is Good Code. It has sensible and consistent names for functions
and variables. It's concise. It doesn't do anything obviously stupid. It has
never had to live in the wild, or answer to a sales team. It does exactly one,
mundane, specific thing, and it does it well. It was written by a single
person, and never touched by another. [...]"

"Every programmer starts out writing some perfect little snowflake like
this. Then they're told on Friday they need to have six hundred snowflakes
written by Tuesday, so they cheat a bit here and there and maybe copy a
few snowflakes and try to stick them together or they have to ask a
coworker to work on one who melts it and then all the programmers’
snowflakes get dumped together in some inscrutable shape and..."

What can we learn from the snowflake?

* What is good about them?

* What is good about them?
°* Why doesn't this goodness seem to scale in practice?

* What is good about them?
°* Why doesn't this goodness seem to scale in practice?

® Could it scale in theory?

In this talk

In this talk

® Develop a mental framework of what we mean by problem solving

In this talk

® Develop a mental framework of what we mean by problem solving

® Define a category to reinforce this model in different contexts

In this talk

® Develop a mental framework of what we mean by problem solving
® Define a category to reinforce this model in different contexts
® Transcend the world of maths and programming with functors

Problem solving 101

Nick
Zorchenhimer

Found this in production today. | need
a drink.

CompareBoolean orig, bool wal)

AreBooleansEqual(orig, val);

1 AreBooleansEqual(bool orig, bool w

12:54 AM - 31 May 19 -

2,519 Retweets 7,054 Likes

Q (o

* \We reason about code ...

* \We reason about code ...

e ..in order to write good programs, and don't think twice

A snowflake ...

® has sensible, consistent names

A snowflake ...
® has sensible, consistent names

® js concise

A snowflake ...
® has sensible, consistent names
® js concise

® does what it is supposed to do

A snowflake ...
® has sensible, consistent names
® is concise
® does what it is supposed to do
e additionally doesn't do anything stupid

A snowflake ...
® has sensible, consistent names
® is concise
® does what it is supposed to do
e additionally doesn't do anything stupid

® js understandable

* Elegant code <= Understandable code

® Elegant code <= Understandable code
® Understandable code <= code, broken up into just big enough chunks

® Elegant code <= Understandable code
® Understandable code <= code, broken up into just big enough chunks
® Divided and conquered, by the books

// Print wether the read string has an even length
int main() {
string str;
getline(cin, str);
int len = str.length();
int is_even = len % 2 == 0;
printf("%sd");
return 0;

hasEvenLength :: String -> String
hasEvenLength = show . even . length

-- Print wether the read string has an even length
main = interact hasEvenLength

length :: String -> Int

even :: Int -> Bool

show :: Bool -> String

showEvenLength :: String -> String
showEvenLength = show . even . length

-- Print wether the read string has an even length
main = interact showEvenLength

e Call it procedures or functions, they are just a way of describing
"smaller problem”

e Call it procedures or functions, they are just a way of describing
"smaller problem”

® Programming is about composing them, yielding structure

e Call it procedures or functions, they are just a way of describing
"smaller problem”

® Programming is about composing them, yielding structure
® To study structure, it helps to make composition it explicit

Call it procedures or functions, they are just a way of describing
"smaller problem”

Programming is about composing them, yielding structure
To study structure, it helps to make composition it explicit
(Program) structure < (function) composition

Next: Let's see how we can study composition

A taste of Category Theory

Design P.lﬂcmb

Category Theory

® |s the science of patterns through composition

Category Theory

® |s the science of patterns through composition

e Abstracts structure across different fields

Category Theory

® |s the science of patterns through composition
® Abstracts structure across different fields

® Applies well to programming ...

m m m m

Category Theory

Is the study of composition

Is the science of patterns

Is a language that abstracts structure across different fields

Applies well to programming ...
® ..because programming is all about structure (of our problems)

Let's define a category

ed

eb

eC

id_a e

id_bde b

id_cSe

id_a

o Xe

id bee b

id_cSe

® That's it

® That's it
e Simple definition, but can be used to derive a surprising amount of
properties

® That's it

e Simple definition, but can be used to derive a surprising amount of
properties

* \We give categories meaning, then compare and reuse structure across
different contexts

How to define meaning

1. Say what the objects are

How to define meaning

1. Say what the objects are
2. Say what the arrows are

How to define meaning

1. Say what the objects are
2. Say what the arrows are
3. Say what the identities are

How to define meaning

1. Say what the objects are

2. Say what the arrows are

3. Say what the identities are

4, Say how the arrows compose

Category M

Category M

(&

o %
X

Obj(M) = {x}

Category M

(&

o %
X

Obj(M) = {x}
Hom(M) = N

Category M

(&

o %
X

Obj(M) = {x} id x=0
Hom(M) = N

Category M

(&

o %
X

Obj(M) = {x} idx=0
Hom(M) = |\| composition = (+)

Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)

Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)

Identity: Any arrow can be composed with identity (n + O)

Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)
Identity: Any arrow can be composed with identity (n + O)

Associativity: Composing arrows (i + j) + k is the same as
composing i+ (j + k)

Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)
Identity: Any arrow can be composed with identity (n + O)

Associativity: Composing arrows (i + j) + k is the same as

composing i+ (j + k)
All logic is encoded in the composition

Programmers Category

The Category of Types and
Functions

The Category of Types and
Functions

1. Objects — Types

The Category of Types and
Functions

1. Objects — Types
2. Arrows — Functions

The Category of Types and
Functions

1. Objects — Types
2. Arrows — Functions
3. Identity — fn(x) => x

The Category of Types and
Functions

1. Objects — Types

2. Arrows — Functions

3. Identity — fn(x) => x

4. Composition — Function composition

length even

7N

¢ String oInt eBool

even . length

length even

s String #lnt #Bool

even . length

t "a\;]l

Ob(Cat) = categories
Hom(Cat) = functors

—m

~ Vorsich

Funktor

.2m Abstand halten‘

The Functor

® |s a mapping between categories

The Functor

® |s a mapping between categories

* Maps objects into objects and arrows into arrows ...

The Functor

® |s a mapping between categories
* Maps objects into objects and arrows into arrows ...

® _..Preserving structure!

<d href="bar.com" /> <d href="baz.de" />

T NN

37 ' > L 2
foo.com bar.com baz.de

<d href="bar.com" /:- <d href="baz.de" /:-

'FDO com bqr.com baz. de

connect

Server A Server B

<d href="bar.com" /> <d href="baz.de" />

T NN,

9 ® 9 ®
bar.com baz.d

<d href="bar.com" /> <d href="baz.de" />

T N,

9 ® 9 ®
bar.com baz.d

<d href="bar.com" /> <d href="baz.de" />

T NN,

*9 ® 9 ®
bar.com baz.d

<d href="bar.com" /> <d href="baz.de" />

Server A Server B

Endofunctors

® Remember Cat?

Ob(Cat) = categories
Hom(Cat) = functors

The category of
types and functions

=

Ob(Cat) = categories
Hom(Cat) = functors

® Remember Cat?

® Arrows between the same object in Cat —+endofunctor

® Remember Cat?
® Arrows between the same object in Cat —+endofunctor

® The kind of functor used in programming!

oList String eListInt e List Bool

length even

¢ String °Int eBool

even . length

>eoList String eListInt ¢ List Bool

length even

¢ String °Int eBool

even . length

map length map even

>eoList String eListInt ¢ List Bool

map even . length

length even

¢ String °Int eBool

even . length

® A functor is a mapping between categories

® A functor is a mapping between categories

® Used in programming when we find similar structure (e.g. for mapping
Int -> List Int)

® A functor is a mapping between categories

® Used in programming when we find similar structure (e.g. for mapping

Int -> List Int)

Preserving structure <= Preserving composition

A functor is a mapping between categories

Used in programming when we find similar structure (e.g. for mapping
Int -> List Int)

Preserving structure <= Preserving composition
How do we describe a functor in programming?

(—\och
Qm/\—\—r/\:c
\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)

ﬁ(—\och
<m/_\f/\c
\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)

oF a oFb oF ¢

S NN

[Xe| ohb ecC

\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)

-- Functor interface

fmap :: Functor f => (a -> b) -> f a ->fb

-- Input 1: Function

NANNNANNNN

fmap :: Functor f => (a -> b) -> (f a -> f b)

-- Output: Enriched function

NANNANNNANNNNNAN

fmap :: Functor f => (a -> b) -> (f a -> f b)

e A functor represents new parts of categories

e A functor represents new parts of categories

® |In programming, it represents new computational contexts

e A functor represents new parts of categories
> Retaining structure!

® |In programming, it represents new computational contexts
» Retaining structure!

Example Contexts

e List: Where computations may have multiple return values

Example Contexts

e List: Where computations may have multiple return values

°* Maybe (Optional): Where failures might occur

Example Contexts

e List: Where computations may have multiple return values
°* Maybe (Optional): Where failures might occur
® |O: Where side effects can happen

Example Contexts

e List: Where computations may have multiple return values
°* Maybe (Optional): Where failures might occur
® |O: Where side effects can happen

— Use the functor to abstract over the context!

List Implements fmap!

prompt> fmap length ["YO", "YOO", "Y000"]
[2,3,4]

prompt> fmap even [1..10]
[False,True,False,True,False,True,False,True,False,True]

prompt> fmap (even . Length) ["ah", "aha", "ehhhhh"]
[True,False,True]

Maybe Implements fmap!

ghci> fmap even Nothing

Nothing

ghci> fmap length (Just "Y000")

Just 4

ghci> fmap (even . Length) (Just "Y000")
(Just True)

|O implements fmap!

Get a string from the command line...

prompt> fmap length getLineér————”’///

HELLOWORLD

10 ... and an integer

prompt> fmap even getInte————J
33

False
prompt> fmap (even . length) getLine
HELLO
False

Y

v

Y

B Instances
@ Functor
Functor
@ Functor
Functor
Functor
Functor
Functor

Functor

Functor
Functor
Functor
Functor
Functor
Functor

Functor
Functor

Functor
Functor
@ Functor
Functor
Functor
@ Functor

Functor

[1

Maybe

10

Par1
NonEmpty
ReadP
ReadPrec
Down
Product
Sum
Dual
Last
First
STM
Handler
Identity
Ziplist
ArgDescr
OptDescr
Argorder
Option
Last

First

| # source
‘ # Source
| # Source
| # Source
| # Source
| # source
‘ # Source
| # Source
| # source
‘ # Source
| # Source
‘ # Source
| # Source
| # source
‘ # Source
| # Source
| # source
| # Source
| # source
‘ # Source
| # Source

‘ # Source

‘ # Source

Since.
Since.
Since.
Since.
Since.

Since.

Since:

Since.

Since:
Since:
Since:
Since:
Since:
Since:
Since:

Since:

Since.
Since.
Since.
Since.
Since.
Since.

Since.

0 2.1
2.1
2.1
:4.9.0.0
0 4.9.0.0
0 2.1

21
:4.11.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.3.0.0
4.6.0.0
4.8.0.0
0 2.1

0 4.6.0.0
:4.6.0.0
:4.6.0.0
0 4.9.0.0
:4.9.0.0

:4.9.0.0

Functor
@ Functor
Functor
& Functor
Functor
Functor
Functor
Functor
Functor

Arrow a

Functor
Functor
Functor
Functor
Functor
Functor
@ Functor
Functor
@ Functor
Functor
Functor

@ Functor

Max | # source Since:
Min | # source Since:
Complex | #source Since:
(Either a) ‘ # Source Since:
(V1 :: Type -> Type) ‘# Source Since:
(U1 :: Type -> Type) | #Source ~ Since:
() a) ‘ # Source Since:
(ST s) | # source Since:
(Proxy :: Type -> Type) ‘# Source Since:
=> Functor (ArrowMonad a) ‘# Source Since:
Monad m => Functor (WrappedMonad m) ‘# Source Since:
(ST s) | # Source Since:
(Arg a) | # Source Since:
f => Functor (Recl f) ‘#Smu'(e Since:
(URec Char :: Type -> Type) ‘# Source Since:
(URec Double :: Type -> Type) ‘# Source Since:
(URec Float :: Type -> Type) | # Source Since:
(URec Int :: Type -> Type) ‘# Source Since:
(URec Word :: Type -> Type) ‘# Source Since:
(URec (Ptr ()) :: Type -> Type) ‘# Source Since:
f => Functor (Alt f) ‘# Source Since:
f => Functor (Ap f) ‘# Source Since:
(Const m :: Type -> Type) ‘# Source Since:

4.9.0.0
4.9.0.0
4.9.0.0
3.0
4.9.0.0
4.9.0.0
2.1

2.1
4.7.0.0
4.6.0.0
2.1

2.1
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.8.0.0
4.12.0.0
2.1

@ Arrow a => Functor (WrappedArrow a b) # Source Since: 2.1

|Synopsis

The functor provides

® Consistent, predictable structural sharing

The functor provides

® Consistent, predictable structural sharing
® Instant context switching

The functor provides

® Consistent, predictable structural sharing

® Instant context switching
e With that follows ...

The functor provides

® Consistent, predictable structural sharing

® Instant context switching
° With that follows ...
> Flexibility

The functor provides

® Consistent, predictable structural sharing

® Instant context switching
° With that follows ...

> Flexibility

> Code reuse

The functor provides

® Consistent, predictable structural sharing

® Instant context switching
° With that follows ...

> Flexibility

» Code reuse

> Separation of concerns

The functor provides

® Consistent, predictable structural sharing

® Instant context switching
e With that follows ...
> Flexibility
» Code reuse
> Separation of concerns
» Modularity

® Thinking categorically has inspired me to ...

® Thinking categorically has inspired me to ...
> Explore math and programming side by side

® Thinking categorically has inspired me to ...

> Explore math and programming side by side
> Be more curious about writing programs

® Thinking categorically has inspired me to ...
> Explore math and programming side by side
> Be more curious about writing programs
» Think differently about program structure

® Thinking categorically has inspired me to ...
> Explore math and programming side by side
> Be more curious about writing programs
» Think differently about program structure
» Be more confident in knowing when structure can be reused

® Thinking categorically has inspired me to ...
> Explore math and programming side by side
> Be more curious about writing programs
» Think differently about program structure
» Be more confident in knowing when structure can be reused

The functor is just the beginning ...

Functor

/

Comonad

Applicative

Semigroup

|

Monoid | :

Category

Altemative | | Foldable | | Monad | Arrow -% AmowZero { AmowPlus
Traversable MonadFix | | MonadPlus | | AmowApply | | AmowChoice | | AmowLoop

Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
and composing

Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
and composing

® Structure emerges through composition

Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
and composing

® Structure emerges through composition

® Functional programming makes composition explicit

Summary

Fundamentally, we solve all problems the same way: splitting, solving,
and composing

Structure emerges through composition

Functional programming makes composition explicit

Category theory helps us formally reason about structure

Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
and composing

® Structure emerges through composition
® Functional programming makes composition explicit
e Category theory helps us formally reason about structure

® And provides concepts like the functor that lets us put perfect little
snowflakes into complicated contexts, without thinking twice @

Thank you!

Ludvig Sundstréom

ludvig.sundstroem@innog.com

\. +49 1516 1181270

’ @I5und

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim a. Rh.
Germany

+49 2173 3366-0

Ohlaver Str. 43
10999 Berlin
Germany

Ludwigstr. 180E
63067 Offenbach
Germany

vuestions?

Kreuzstr. 16
80331 Munchen
Germany

/o WeWork
Hermannstrasse 13
20095 Hamburg
Germany

INNOQ

www.innog.com

innoQ Schweiz GmbH

Gewerbestr. 11 Albulastr. 55
CH-6330 Cham 8048 Zurich
Switzerland Switzerland

+4141743 0111

O : http://www.stilldrinking.org/programming-sucks
1 https:
//insights.stackoverflow.com/survey/2019#technology

2 s https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_
correspondence

3 : https://en.wikipedia.org/wiki/Design_Patterns

4 3 https://golem.ph.utexas.edu/category/2012/01/
vorsicht_funktor.html

http://www.stilldrinking.org/programming-sucks
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Design_Patterns
https://golem.ph.utexas.edu/category/2012/01/vorsicht_funktor.html
https://golem.ph.utexas.edu/category/2012/01/vorsicht_funktor.html

Laws

Associativity ina category: h.g.f=(h.g).f=h.(g.f)
Identity in a category (forf:a->b): f.id_a=f id_b.f="f

® Functor retains structure under composition:
ifh=g.fthenFh=Fg.Ff

® Functor retains structure under identity: F id_a = id_{F a}

Curry-Howard Isomorphism

* Void < False

° () < True

® Product Types < OR
® Sum Types <= AND
* A->B < IfAthenB

Notes on functor as a typeclass

Interfaces methods are always associated with an object instance. In other
words, there is always an implied 'this' parameter that is the object on
which the method is called. All inputs to a type class function are explicit.

