
Architectures
for Modern
Web Front Ends

2 0 2 0 /0 2 /0 6
OOP

Stefan Tilkov
@stilkov

Lucas Dohmen
@moonbeamlabs

Annoying your app users
in 10 easy steps

1.  
Forbid the use of the back

and forward buttons

2.  
Send them to the home

page when they hit
“refresh” …

3.  
… or at least ensure the

browser pops up a
warning window

4.  
Make sure they can’t open
a second browser window

5.  
Let them see UI decoration
and ads first, content last

6.  
Make sure they can’t

bookmark or send a link

7.  
Don’t let Google index

anything

8.  
Show users a picture of
your app – it’s surely
better than nothing

9.  
Disable assistive

technologies. Who needs a
screen reader, anyway?

10.  
Ensure non-functioning
JavaScript gives them a

blank page

History repeating …

CORBA
Web

WS-*
REST

What’s the client side analogy?

1) in the SOAP/WSDL sense

“Web app”2)

2) built as a careless SPA

“Web service”1)

> Uses HTTP as transport
> Ignores HTTP verbs
> Ignores URIs
> Exposes single “endpoint”
> Fails to embrace the Web

> Uses browser as runtime
> Ignores forward, back, refresh
> Does not support linking
> Exposes monolithic “app”
> Fails to embrace the browser

The web-native way of distributing logic

Process Flow

Presentation

Domain Logic

Data

Server

Client > Rendering, layout, styling  
on an unknown client

> Logic & state machine on
server

> Client user-agent
extensible via 
code on demand

HTML & Hypermedia
• In REST, servers expose a hypermedia format
• Option 1: Just invent your own JSON-based, incomplete clone

• Option 2: Just use HTML

• Clients need to be RESTful, too
• Option 1: Invent your own, JS-based, buggy, incomplete

implementation

• Option 2: Use the browser

A great REST hypermedia API is very similar to
a simple, server-sided rendered web application

The role of JS in modern
Web applications

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

HTML

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

Why Routing?

Solution: 
Store some app  
state in the URI!

Bookmarks?

Deep links?

Reload?

Browser Server

GET /

200 OK…

GET /app.js

200 OK…

Appstart…

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

Searchability

Crawler Server

GET /

Static HTML Snapshot

API

run App AJAX Fun…

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

Rendering Logic

Routing

HTML

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

Rendering Logic

Routing

HTMLSame Code

“All your users are
non-JS users
while they‘re
downloading your JS”

Jake Archibald, developer advocate for Google Chrome

Prerendering

Browser Server

GET /

Static HTML Snapshot

API

run App AJAX Fun…

FCP

TTI

load & run
App

AJAX Fun…

Hydration

How to simulate
readiness?

What about Events
(Clicks etc)?

How to match server-side
HTML to client-side
DOM?

Browser

GET /

Static HTML Snapshot
FCP

TTI

load & run App

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

(Pre-)Rendering Logic

Routing

HTML

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON API

JSON Client

(Pre-)Rendering Logic

Routing

HTML

Hydration

JSON API

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON Client

(Pre-)Rendering Logic

Routing

HTML

Hydration

Business Logic

State

Business Logic

State

JSON API

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON Client

(Pre-)Rendering Logic

Routing

HTML

Hydration

Business Logic

State

Business Logic

Same functionality,  
different languages!

State

State

Business Logic

JSON API

Business Logic

State

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON Client

(Pre-)Rendering Logic

Routing

HTML

Hydration

high control,
high observability

low control,
low observability

State

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

JSON

JSON Client

(Pre-)Rendering Logic

Routing

HTML

Hydration

Business Logic

JSON API

State

Business Logic

Much, much
more client side JavaScript

37

Resilience

customElement.define(

 "my-element",

 MyElement

);

Modern API in JS Modern API in CSS

.item {

 display: contents;

}

Firefox 63: It works Firefox 63: It works

Chrome 69: Exception Chrome 69: Skips that line

“JavaScript is the
most expensive
part of your
page”

Addy Osmani, Speed team lead for Google Chrome

Cost of JavaScript on Reddit.com

Pixel 3

Moto G4

Alcatel 2X 5059D

0 seconds 1 second 2 seconds

Main thread Worker thread

The cost of JavaScript in 2019

Test your app on
real, low-cost devices and
slow networks
(No, an emulator is not enough)

RAGE CLICKS
“15% of users tried to interact sometime between
onload and interactive.”

Akamai: Metrics That Matter

RAGE CLICKS

https://speakerdeck.com/bluesmoon/ux-and-performance-metrics-that-matter-a062d37f-e6c7-4b8a-8399-472ec76bb75e

Hydration is not
a progressive enhancement,
it‘s an uncanny valley

Now what?

• Client-side state handling

• Better offline support

• Closer to desktop model

• Better performance

• Server-side state handling

• Simpler

• More resilient & observable

• Smaller client footprint

• Better performance

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

HTML

State

Business Logic

Routing

Rendering Logic

Look & Presentation Logic

Server

Client

HTML

Rendering Logic

Look & Presentation Logic

JSON/
HTML

48

Let's use the technologies from SPAs,
but keep the architecture of the Web.

Pure SPASSR+RCPure SSR

• Large number of users

• Basic UX needs

• Support for past, present
and future devices

• Complex global client
state

• Offline support

• Controlled device
landscape

• Like SSR, but with

• more UX needs

• Complex component
state

• Basic offline support

Krischerstr. 100
40789 Monheim am Rhein
Germany
+49 2173 3366-0

Ohlauer Str. 43
10999 Berlin
Germany
+49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
+49 2173 3366-0

Kreuzstr. 16
80331 München
Germany
+49 2173 3366-0

Hermannstrasse 13
20095 Hamburg
Germany
+49 2173 3366-0

Gewerbestr. 11
CH-6330 Cham
Switzerland
+41 41 743 0116

innoQ Deutschland GmbH innoQ Schweiz GmbH

www.innoq.com

50

Thanks! Questions?
Stefan Tilkov
stefan.tilkov@innoq.com
+49 170 4712625
stilkov

Lucas Dohmen
lucas.dohmen@innoq.com
+49 151 75062496
moonbeamlabs

