
#Architecture201x
Stefan Tilkov | innoQ

stefan.tilkov@innoq.com
@stilkov

mailto:stefan.tilkov@innoq.com

Let’s start with the enterprise

The J2EE(TM) 1.4 Tutorial, http://docs.oracle.com/cd/E17802_01/j2ee/j2ee/1.4/docs/tutorial-update2/doc/Overview7.html

GỬI PHẢN HỒI, http://ejbvn.wordpress.com

http://ejbvn.wordpress.com

DB

Application

Browser

DB

Backend

Frontend

Browser

Assumptions to be challenged
One single system

One single environment
Predictable load

Clear & distinct roles
Planned releases

Built because they have to be

Somewhat Limited Agility

Increased Desaster Potential

Cut Things into Pieces

321

Small, lightweight, focused apps

My favorite programmer’s story

Task: Read a file of text, determine
the n most frequently used words,
and print out a sorted list of those

words along with their frequencies.

Donald Knuth Doug McIlroy

Dr. Drang, http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/

10-page literal
Pascal program,

including innovative
new data structure

tr	 -‐cs	 A-‐Za-‐z	 '\n'	 |	
tr	 A-‐Z	 a-‐z	 |	
sort	 |	
uniq	 -‐c	 |	
sort	 -‐rn	 |	
sed	 ${1}q	

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/

Small, lightweight, focused apps

Persistence

Logic

UI

M
odule A

M
odule B

M
odule C

System A

Persistence

Logic

UI

System B

Persistence

Logic

UI

System C

Persistence

Logic

UI

Assumptions to be challenged
Large systems with a single environment

Separation internal/external
Predictable non-functional requirements

Clear & distinct roles
Planned releases

Built because they have to be

http://12factor.net

http://12factor.net

Separate, runnable process
Accessible via standard ports & protocols

Shared-nothing model
Horizontal scaling

Fast startup & recovery

App characteristics

Microservice Characteristics
small

each running in its own process
lightweight communicating mechanisms (often HTTP)

built around business capabilities
independently deployable

mininum of centralized management
may be written in different programming languages

may use different data storage technologies

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

System Characteristics
Separate (redundant) persistence

Internal, separate logic
Domain models & implementation strategies

Separate UI
Separate development & evolution

Limited interaction with other systems
Autonomous deployment and operations

In search for a name …

Not-so-micro-service

Autonomous system

Full-stack service

Self-sufficient component
Small system

Sovereign system

Independent system

Cohesive system

Large enough system

Small enough system

Logical node Domain unit

Bounded system

Executable component

System

Self-contained system

Self-Contained System (SCS)

SCS Characteristics
Autonomous web application

Owned by one team
No sync remote calls
Service API optional

Includes data and logic
No shared UI

No or pull-based code sharing only

SCS App Microservice

Size (kLoC) 1-50 0.5-10 0.1-?

State Self-contained External Self-contained

per Logical System 5-25 >50 >100

Communication between units No (if possible) ? Yes

UI Included Included External (?)

UI Integration Yes (web-based) ? ?

Simple process run model

Back to building servers

Closer to the metal

Isolation and independence

Polyglotism

Built for replacement,
not for re-use

FAQ
Press Release

Customer Experience
User Manual

Werner Vogels, http://www.allthingsdistributed.com/2006/11/working_backwards.html

http://www.allthingsdistributed.com/2006/11/working_backwards.html

Dismantled monolith
Backend & front-end services

(Re-Implementation in Node.js)

https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/

https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/

DB

Service

Frontend

Browser

Service Service

DB

Service

Frontend

Browser

Service Service

DB DB

DB

Service

FE

Browser

Service Service

DB DB

FE FE

Organization ⟷ Architecture

Kraus, Steinacker, Wegner: Teile und Herrsche – Kleine Systeme für große Architekturen, http://bit.ly/152cXbx

Independent “Verticals”
REST-based macro architecture

Individual micro architecture

http://bit.ly/152cXbx

App

DB

Browser

App App

DB DB

Services as DNA
“Dogfooding”
Two-pizza rule

Steve Yegge, https://plus.google.com/110981030061712822816/posts/AaygmbzVeRq

https://plus.google.com/110981030061712822816/posts/AaygmbzVeRq

Tools

Play

Node.js

Modern Java EE
containers

Akka

Embedded Jetty

vert.x

DropWizard

Netty

Example Micro Architecture Stacks
Typesafe (Play, Akka), Java 7

Typesafe (Play, Akka), Scala

JRuby/Rails, Ruby/Sinatra, Passenger

Play 2, Java 8, Spring 4, Spring Data, QueryDSL, Hystrix, Logback

Java 7, JAX-RS/Jersey, Jackson, Tomcat

Java 8, Jetty, Jersey 2.x, HalBuilder, Archaius, Ribbon, Eureka,
Google OAuth2 Client Library

Integrate pieces to form a whole

321

Robust systems
Unreliable networks

S1

S2 S3

Tools

HystrixAkka

Finagle

Smart aggregation

REST APIs
Client-specific orchestration

Streaming architecture

Browser

DB

Service

Frontend

Service Service

DB DB

Mobile
App

Browser

DB

Service

Frontend

Service Service

DB DB

Mobile
App

Orch 1 Orch 2

S1

S2 S3

S4 S5 S6

Tools

ql.io

Storm
Rx

Play
spray

Web-native front-end integration

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Client Logic

Service Interface Service Interface

Presentation Logic

Orchestration Logic

Business Logic Business Logic

Presentation Logic

Business Logic Business Logic

Presentation Logic Presentation Logic

Simple semantic HTML
Open Data

Single domain – no portal
“Google as the homepage”

Polyglot environment

https://gds.blog.gov.uk/govuk-launch-colophon/

https://gds.blog.gov.uk/govuk-launch-colophon/

Tools & Approaches

RESTful HTTP

ROCA

MVC Web Frameworks

Change & run efficiently

321

Horizontal scaling

Virtualized operating system as
container

Fully automated, repeatable
deployment

Transparent monitoring

Small changesets
Everyone deploys

Fast deploys
Change flags

Graphs/metrics
Fix fast/roll forward

Ross Snyder, http://www.slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches

http://www.slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches

Fully cloud-based
Self-made PaaS

Simian Army

Adrian Cockcroft, http://www.infoq.com/presentations/Netflix-Architecture

http://www.infoq.com/presentations/Netflix-Architecture

Netflix Stack
Zuul Edge Router

Eureka Service Registry

Hystrix Stability patterns

Ribbon HTTP client on steroids

Karyon Application blueprint

Archaius Configuration

Asgard Console

Servo Annotation-based metrics

… …

Many, many more at http://netflix.github.io

http://netflix.github.io

Simian Army

Chaos Monkey

Security Monkey

Latency Monkey

Conformity Monkey

Doctor Monkey

Janitor Monkey

10-18 Monkey

Chaos Gorilla

Tools

Puppet
Metrics

docker

Vagrant

Chef

logstash

Zipkin

Packer

Summary

Build smaller

Aggregate smartly

Merge run & change

Thank you!
Questions?
Comments?

Stefan Tilkov, @stilkov
stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Robert-Bosch-Straße 7
64293 Darmstadt
Germany
Phone: +49 2173 3366-0

Radlkoferstraße 2
D-81373 München
Germany
Telefon +49 (0) 89 741185-270

mailto:stefan.tilkov@innoq.com
http://www.innoq.com
http://www.innoq.com

Backup

Browser

HTML Page

Backend 1

UI 1

UI 2

Server-side integration

Backend 2

Frontend 
Server

Examples:
ESI-Caches
SSI
Portal Server

Browser

HTML Page

Backend 1

UI 1

UI 2

Client-side integration

Backend 2

Examples:
AJAX
Proprietary Frameworks

Browser

HTML Page 1

Links

Backend 1

Backend 2

Asset
Server

HTML Page 2

CSS

<<creates>>

<<creates>>

