
Site Reliability
Engineering
 Sven Johann

2 0 2 0 - 0 4 - 0 1
R e m o t e Te c h N i g h t

1

Sven Johann
Senior Consultant
bei INNOQ Deutschland GmbH

Run the systems I develop for 10+ years
Community guy (GOTOcon, TechDebtConf, CaSE
Podcast)

2

3

What is Reliability?
Software Architecture (ISO 25010)

• availability, fault tolerance, recoverability, maturity

Google SRE responsibilities

• availability, latency, performance, efficiency, change management,
monitoring, emergency response, and capacity planning

4

Why
reliability?
If your application cannot
be used, what are your
nice features worth?

Source: https://www.theguardian.com/technology/2014/jul/04/google-down-search-services-intermittent-outage

https://www.theguardian.com/technology/2014/jul/04/google-down-search-services-intermittent-outage

Steer-by-wire: https://
mymotorwheels.wordpress.com/2017/02/10/

have-you-ever-wondered-what-is-drive-by-

https://en.wikipedia.org/wiki/
Artificial_cardiac_pacemaker

5

How much
reliability?
Pace makers, x-by-wire
in cars and plains need
extremely high reliability

https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://en.wikipedia.org/wiki/Artificial_cardiac_pacemaker
https://en.wikipedia.org/wiki/Artificial_cardiac_pacemaker

6

How much
reliability?
Google Ads makes 4000
USD per second

amazon.com retail
makes 5000 USD per
second

http://amazon.com

7

How much
reliability?
Finance: usually
“medium”

SaaS usually “high”

Retail usually “high”

Websites not generating
much revenue usually
“low”

Platforms and developer

8

Reliability is often not well
understood
• People expect systems be available 100% of the time or “as much as

possible”

• Availability comes with a cost. You need to make cost/benefit trade-offs

• Invisible: the absence of errors

• If your system is unreliable, it is already too late. Fix is often hard

• It is continuous work and not fire fighting

9

Causes for Reliability
Problems?
• “You build it, you run it” often suffers from

inexperienced devs

• Operations is not treated as it should by
lead developers and architects

Source: 4+1 Model, Wikipedia

Release It, M. Nygard

https://en.wikipedia.org/wiki/4%2B1_architectural_view_model

10

Causes for
Reliability Problems?
• Dev and Ops have conflicting goals

• Ops has no idea of the code they are
running

Source: Andrew Clay Shafer,
Agile Infrastructure

11

SRE at
Google
Published two books

The original “blue bible”

The workbook
(experiences with CRE -
Customer Reliability
Engineering)

12

Reminder:
You are not
Google

Source: Björn Rabenstein, SREcon

13

SRE at Google
• Google has an SRE and a DEV organisation.

• SREs are embedded in DEV teams

• SREs have SLIs/SLOs, can push back and make tomorrow better than today

14

Service Level .*
• Service Level Indicator (SLI): sensor, gauge

• Service Level Objective (SLO): expectation

• Service Level Agreement (SLA): contract

15

Service Level .* Consequences
• SLIs require monitoring

• Client side instrumentation / EUM

• Server side request logs/metrics

• Front end infrastructure metrics

• SLOs require understanding the customer needs

• Hard question

• Incremental approach

• Meaningful, e.g. what means availability in a Microservices architecture?

16

Error Budget
• Error Budget = 1 - SLO

• SLO = 99,9% availability

• => Error Budget = 0.1%
allowed downtime/failed
requests

• or: SLO = 99,9% of requests
are faster than 150 ms in the
95th percentile

Source: SRE course, Coursera

17

SREs can say “no”
• Error Budget spent: no launches until issues are fixed

• SREs can return the pager to the DEV team

• SREs can leave a DEV team without consequences

• Ability to create back pressure makes a self-regulating loop

• —> Removes major conflict between DEV and OPS

18

Make tomorrow better than today
• SREs are coders

• 50% cap on ops work

• Ops work above those 50% will be assigned to DEV team

• Self-regulating, DEV team sees system in action

• 50% dev work: write software to reduce “toil”

Ops Team

Alone on call
Fix all the mess

Stakeholder

SRE Team

On call with devs
Push back

Part of dev team

19

20

Is SRE an Ops Replacement?
• SRE balances feature velocity and stability

• Systems without feature velocity likely do not need SRE practices

• On premise data center

• Packaged software

21

SRE and DevOps

22

DevOps
• Break down silos between dev,

ops, security and biz

• Accidents are normal (focus on
MTTD/MTTR and change fail rate)

• Change is gradual (CI, CD)

23

SRE
• Manage by SLOs

• Minimize toil

• Automate this year’s job away

• Share ownership with developers

24

Commonalities
• SRE’s effective shared ownership and DevOps’ collaboration model

• Change is best pursued in small, continual steps

• Right tooling is really important, but tools don’t tell you if you achieved
something

• Measurement is key

• Shit happens in prod - practice blameless postmortems

DevOps

Wider Philosophy
Whole business
Silent on how to

run ops

SRE

Narrow roles
Service oriented

Framework on
how to run ops

25

26

SRE for non-
Googlers
• "Seeking SRE” collects interesting

insights how companies adopt SRE

• YBIYRI with SRE support looks
promising

• “SRE in Spirit”

27

YBIYRI and SRE
• Small size: have ops/prod skills in

the team

• Team with strong dev and ops
skills supporting dev teams

• Trainings

• Reviews

• Checklists

• Support

• Templates

• Join production and fix the mess

28

Thanks

