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What is Reliability? 
Software Architecture (ISO 25010) 

• availability, fault tolerance, recoverability, maturity 

Google SRE responsibilities 

• availability, latency, performance, efficiency, change management, 
monitoring, emergency response, and capacity planning
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Why 
reliability? 
If your application cannot 
be used, what are your 
nice features worth?

Source: https://www.theguardian.com/technology/2014/jul/04/google-down-search-services-intermittent-outage

https://www.theguardian.com/technology/2014/jul/04/google-down-search-services-intermittent-outage


Steer-by-wire: https://
mymotorwheels.wordpress.com/2017/02/10/

have-you-ever-wondered-what-is-drive-by-

https://en.wikipedia.org/wiki/
Artificial_cardiac_pacemaker
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How much 
reliability? 
Pace makers, x-by-wire 
in cars and plains need 
extremely high reliability

https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://mymotorwheels.wordpress.com/2017/02/10/have-you-ever-wondered-what-is-drive-by-wire-or-x-by-wire/
https://en.wikipedia.org/wiki/Artificial_cardiac_pacemaker
https://en.wikipedia.org/wiki/Artificial_cardiac_pacemaker


6

How much 
reliability? 
Google Ads makes 4000 
USD per second 

amazon.com retail 
makes 5000 USD per 
second

http://amazon.com
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How much 
reliability? 
Finance: usually 
“medium” 

SaaS usually “high” 

Retail usually “high” 

Websites not generating 
much revenue usually 
“low” 

Platforms and developer 
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Reliability is often not well 
understood 
• People expect systems be available 100% of the time or “as much as 

possible” 

• Availability comes with a cost. You need to make cost/benefit trade-offs 

• Invisible: the absence of errors 

• If your system is unreliable, it is already too late. Fix is often hard 

• It is continuous work and not fire fighting
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Causes for Reliability 
Problems? 
• “You build it, you run it” often suffers from 

inexperienced devs 

• Operations is not treated as it should by 
lead developers and architects

Source: 4+1 Model, Wikipedia

Release It, M. Nygard

https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
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Causes for 
Reliability Problems? 
• Dev and Ops have conflicting goals 

• Ops has no idea of the code they are 
running

Source: Andrew Clay Shafer, 
Agile Infrastructure
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SRE at 
Google 
Published two books 

The original “blue bible” 

The workbook 
(experiences with CRE - 
Customer Reliability 
Engineering)  
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Reminder: 
You are not 
Google

Source: Björn Rabenstein, SREcon
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SRE at Google 
• Google has an SRE and a DEV organisation.  

• SREs are embedded in DEV teams 

• SREs have SLIs/SLOs, can push back and make tomorrow better than today
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Service Level .* 
• Service Level Indicator (SLI): sensor, gauge 

• Service Level Objective (SLO): expectation 

• Service Level Agreement (SLA): contract
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Service Level .* Consequences 
• SLIs require monitoring 

• Client side instrumentation / EUM 

• Server side request logs/metrics 

• Front end infrastructure metrics 

• SLOs require understanding the customer needs  

• Hard question 

• Incremental approach 

• Meaningful, e.g. what means availability in a Microservices architecture?
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Error Budget 
• Error Budget = 1 - SLO 

• SLO = 99,9% availability  

• => Error Budget = 0.1% 
allowed downtime/failed 
requests 

• or: SLO = 99,9% of requests 
are faster than 150 ms in the 
95th percentile 

Source: SRE course, Coursera
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SREs can say “no”  
• Error Budget spent: no launches until issues are fixed 

• SREs can return the pager to the DEV team 

• SREs can leave a DEV team without consequences 

• Ability to create back pressure makes a self-regulating loop 

• —> Removes major conflict between DEV and OPS
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Make tomorrow better than today 
• SREs are coders 

• 50% cap on ops work 

• Ops work above those 50% will be assigned to DEV team 

• Self-regulating, DEV team sees system in action 

• 50% dev work: write software to reduce “toil”



Ops Team 

Alone on call 
Fix all the mess 

Stakeholder 

SRE Team 
   

On call with devs 
Push back 

Part of dev team 
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Is SRE an Ops Replacement? 
• SRE balances feature velocity and stability 

• Systems without feature velocity likely do not need SRE practices 

• On premise data center 

• Packaged software
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SRE and DevOps 
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DevOps 
• Break down silos between dev, 

ops, security and biz 

• Accidents are normal (focus on 
MTTD/MTTR and change fail rate) 

• Change is gradual (CI, CD)
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SRE 
• Manage by SLOs 

• Minimize toil 

• Automate this year’s job away 

• Share ownership with developers
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Commonalities 
• SRE’s effective shared ownership and DevOps’ collaboration model 

• Change is best pursued in small, continual steps 

• Right tooling is really important, but tools don’t tell you if you achieved 
something 

• Measurement is key 

• Shit happens in prod - practice blameless postmortems



DevOps 

Wider Philosophy 
Whole business 
Silent on how to 

run ops 

SRE 
   

Narrow roles 
Service oriented 

Framework on 
how to run ops 
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SRE for non-
Googlers 
• "Seeking SRE” collects interesting 

insights how companies adopt SRE 

• YBIYRI with SRE support looks 
promising 

• “SRE in Spirit”
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YBIYRI and SRE  
• Small size: have ops/prod skills in 

the team 

• Team with strong dev and ops 
skills supporting dev teams 

• Trainings 

• Reviews 

• Checklists 

• Support 

• Templates 

• Join production and fix the mess
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Thanks 


