
Five (easy?) Steps
Towards Continuous

Delivery
Eberhard Wolff

@ewolff
innoQ

http://continuous-delivery-buch.de/

http://microservices-buch.de/ http://microservices-book.com/

http://microservices-book.com/primer.html

FREE!!!!

What is CD?

Continuous Delivery =
Deployment automation

Continuous Delivery =
Deployment automation

to increase speed

Production problem.
Boss screams at you.

How long to production?
<15 min
<30 min
<60 min
>60 min
>1 day

OH “The application
server takes 15 min

to start.”

Why don’t we deliver
software every day

into production?

Old release

Hot fix

Old release

New release

Risk of bug fix small
compared to keeping

faulty release in
production.

Would we deliver into
production more often

if it took e.g. 5
minutes?

Would we deliver
software into

production more often
with Puppet, Chef,

Docker?

Step One

Realize deployment
automation is just a

prerequisite for
Continuous Delivery!

Continuous Delivery =
Deployment automation

to increase speed

Continuous Delivery =
Deployment automation

to increase speed

What is CD?

Agile Manifesto Principles

Our highest priority is

to satisfy the customer

through early and

continuous delivery

of valuable software.

Build Pipeline

Commit
Stage

Automated
Acceptance

Testing

Automated
Capacity
Testing

Manual
Explorative

Testing
Release

Many tests to minimize risk

Infrastructure automation

Fast Feedback

Why Continuous
Delivery?

> Faster Deployment

> Higher Reliability

> Reproducibility

Why Continuous
Delivery?

> Cost-savings hard to
estimate

> CD is an important step
towards better and faster
results €

Understand the Goal!

> Seemingly simple

> …but often forgotten

> Not just about time-to-market

> Might also be reliability!

Reliability

> Errors hard to reproduce

> Software hard to install

> Invest in deployment automation

> Ensure environment is identical in
development and production

Time-to-Market

> Optimize processing time!

> There is already a pipeline

> Goal: Constant flow of features through the
pipeline

> Optimize throughput

Value Stream Mapping

> Analyze existing pipeline

> Optimize throughput

Commit Acceptance
Testing

Capacity
Testing Release

Delay

Lead Time

5 Days 2 Days 1 Day

1 day 1 day 1 day

Automated
Acceptance

Testing

Automated
Capacity
Testing

Testing,
Sign Off &

Release

Cycle Time = Delay + Lead Time

1 hour

20 minutes 20 minutes

30 minutes

2 Day

2 day

Commit Acceptance
Testing

Capacity
Testing Release

Delay

Lead Time

5 Days 2 Days 1 Day

1 day 1 day 1 day

Automated
Acceptance

Testing

Automated
Capacity
Testing

Testing,
Sign Off &

Release

Cycle Time = Delay + Lead Time

1 hour

20 minutes 20 minutes

30 minutes

2 Day

2 day

11 days

5 days

Result

> Cycle time reduced: Automated tests faster

> …and less effort

> Still manual sign-off & Release

> Feedback faster: Early 80% acceptance test

Goal:
Reliability

Deployment
Automation

Goal:
Time-to-Market Value Stream

MappingFast Feedback

Step Two

Understand goals!
Take pragmatic steps!

Commit
Automated
Acceptance

Testing

Automated
Capacity
Testing

Testing,
Sign Off &

Release
1 hour 2 day

Why Sign Off?

Acceptance test =
software is accepted

Why Sign-Off?

> Customer wants to check the final result.

> Understandable

> But: Slow

> But: Hard to reproduce

Eliminate manual
Sign-off!

Sign-off->Automated Tests

> Automated tests are fast

> …and easily reproducible

> …and cheaper

> Obviously the better choice!

Why Sign-off?

> Risk of deploying the wrong software

> Lack of trust in tests

> Risk handling strategy

Handling risk

> Make it easier to resolve issues

> Make deployment easier and faster

> Problem in production easier to fix

> Deployment automation

Old release

New release

Old release

New release

New release

New release

New release

Handling risk

> Smaller deployments

> More frequent deployments

> Less risk that an error sneaks in

> Easier to reverse

Creating Trust

> Customer must understand the tests

> Reviews

> Use proper kind of tests

Automated
Acceptance

Tests

Automated
Integration

Tests

Unit
Tests

Manual
Tests

Test Pyramid

Visible to
customer

The ultimate
requirement is an

automated
acceptance test.

XP 1999

UI Tests: Selenium

> Easy to start

> Natural for testers

> Fragile

> Loose semantics

Behavior-driven
development: Example
Scenario: User registers successfully

Context

Event

Expected
outcome

Given a new user with email
eberhard.wolff@gmail.com
firstname Eberhard
name Wolff

When the user registers

Then a customer with email
eberhard.wolff@gmail.com should exist

And no error should be reported

Creating Trust

> UI Tests are overused and have drawbacks

> BDD is designed for customers

> But most important:

> Choose whatever the customer understands!

> UI tests might be OK

Step Three

Eliminate manual
sign-offs!

Create trust in tests!

CD & DevOps

> Usually Dev wants Continuous Delivery (CD)

> Dev wants easier and faster releases

> Ops not supportive

> However, they should aim for less risky
deployments…

Ops
> Optimized for costs

> Caught in a local optimum

> i.e. standardized environments

> …but manual deployment

> Large investment for full automation

> Continuous Delivery problem to be expected

Commit
Automated
Acceptance

Testing

Automated
Capacity
Testing

Testing,
Sign Off &

Release

Dev

Ops

CD & DevOps

> No need to create DevOps teams

> Collaboration needed, though

> Deployment is a joined Ops / Dev effort

> Good news: No reorganzation

CD & DevOps

> Seek feedback from Ops early on

> Try to leverage Ops experience

DevOps is no
organization.

DevOps is
collaboration.

Step Four

Deal with the gap
between Dev and Ops!

Continuous Delivery:
Build Pipeline

ECommerce
System

Commit
Stage

Automated
Acceptance

Testing

Automated
Capacity
Testing

Manual
Explorative

Testing
Release

ECommerce
System

3rd party
systems

Database

Challenges
> Dependencies on 3rd party systems

> Must provide test systems

> …or mocks

> Large database

> Must provide test data

Challenges

> Tests take too long

> Deployment takes too long

> Continuous Delivery pipeline takes far too long

Continuous Delivery
with large deployment

units is hard.

Like real hard.

Server Server

Microservices

> Independent deployment units

> E.g. process, VMs, Docker containers

> Any technology

> Any infrastructure

Micro
Service

Micro
Service

Microservices

ECommerce
System

3rd party
systems

Database

Microservices

3rd party
systems

Database

Order

Catalog

Billing

Search

Order

Billing

Customer

Commit!
Stage!

Automated!
Acceptance!
Testing!

Automated!
Capacity!
Testing!

Manual!
Explorative!
Testing!

Release!

Commit!
Stage!

Automated!
Acceptance!
Testing!

Automated!
Capacity!
Testing!

Manual!
Explorative!
Testing!

Release!

Commit!
Stage!

Automated!
Acceptance!
Testing!

Automated!
Capacity!
Testing!

Manual!
Explorative!
Testing!

Release!

Microservice Pipeline

> Build pipeline per Microservice

> Small

> Easy to set up

> Simpler (3rd party systems)

> Faster Feedback: Less tests

> Separate critical and less critical parts

Migrate to Microservices

> Add Microservices to existing system

> Implement new features in Microservices

> No need to redo the full application

Continuous Delivery
doesn’t mean
Microservices.

But can you do
Continuous Delivey

without supporting it
in the architecture?

Step Five

Adjust the
architecture!

Conclusion

Final words

> Do no underestimate the effort!

> This is not about automation to save cost.

> It is about increasing quality!

Conclusion

> Deployment automation is just a prerequisite

> Understand the goals! Take pragmatic steps!

> Eliminate sign-offs! Create trust in tests!

> Deal with the gap between Dev and Ops!

> Adjust the architecture!

Thank You!
@ewolff

