

Resource Management in Kuber-
netes

How it works -What to do

Christopher Schmidt
Christine Koppelt

ISBN —
innoQ Schweiz GmbH
Gewerbestr. 11 · 6330 Cham · Switzerland
Phone (+41) 41 743 01 11 · WWW.INNOQ.COM

Layout: Tammo van Lessen with X ELATEX
Design: Sonja Scheungrab
Print: Pinsker Druck und Medien GmbH, Mainburg, Germany

Resource Management in Kubernetes – How it works - What to do
Published by innoQ Schweiz GmbH
1st Edition · November 2021

Copyright © 2021 Christopher Schmidt, Christine Koppelt

Contents
1 Intro 1

1.1 How Does Kubernetes Work? . 1
1.2 The Challenge . 3

2 Frequently Asked Questions 5
2.1 What Is a Completely Fair Scheduler? . 5
2.2 What Is a cgroup? . 5
2.3 Who Uses the Pod’s Resource Requests Setting? 5
2.4 Do Resource Requests Only Affect the Kubernetes

Scheduler? . 6
2.5 Is There a General Difference between CPU andMemory? 7
2.6 How DoWe Limit Container Memory? . 7
2.7 How DoWe Limit Container CPU? . 8
2.8 What Is Overprovisioning? . 9
2.9 What Is Overcommitment? . 10
2.10 How Is High Load Noticed? . 10
2.11 How Is High Load Responded To? . 11
2.12 What Is a Horizontal Pod Autoscaler? . 12
2.13 What Is a Vertical Pod Autoscaler? . 12
2.14 What Is a Cluster Autoscaler? . 12
2.15 What Is a Cluster Proportional Autoscaler? 13
2.16 Are Containers Secure? . 13
2.17 What Is a RuntimeClass? . 13
2.18 What Is a Probe? . 14
2.19 What Is a Pod Disruption Budget? . 14

3 Kubernetes Probes 15
3.1 Phase and State of a Pod . 15
3.2 Readiness Probe . 16
3.3 Liveness Probe . 17
3.4 Startup Probe . 18

4 Recipes 19
4.1 Avoid Receiving Traffic during Shutdown 19
4.2 Scenario Spring Boot/JVM Applications 19
4.3 Different Types of Workloads . 23
4.4 Planning Your Cluster . 24
4.5 Deployment Recipes . 26
4.6 Cluster Sizing Recipes . 27

iii

4.7 Cluster Segmentation . 29
4.8 Availability Rules . 29
4.9 Node Type Rules . 30
4.10 Pod Priorities . 32

About the Authors 33

1 Intro
Kubernetes (K8s) is an open-source platform formanaging containerized applica-
tions and services. Over the last couple of years, it has arguably become the most
popular infrastructure platform with a rapidly growing ecosystem.

Its strengths are:

• It is supported by nearly every cloud provider and runs on-premise as well,
which makes it possible to easily port software between different types of
environments.

• It provides a uniform operating platform across language and framework
boundaries.

• It provides sophisticated mechanisms to scale applications up and down auto-
matically, vertically as well as horizontally, which enables efficient use of server
nodes.

• It maximizes resource utilization by automatically relocating applications to
other nodes if free resources are available there.

In this primer, we provide an overview of the parameters that can be adjusted to
ensure that Kubernetes can run your workloads as efficiently as possible.

1.1 HowDoes KubernetesWork?
But before we dive into CPU and memory tweaking, let’s have a look at the
components of a Kubernetes cluster first. The brain of a Kubernetes cluster is one
or multiple master nodes which manage the cluster. Besides this, it has a couple
of worker nodes that run the workloads. Each of them has one or multiple Pods.
A Pod is an entity with a unique IP address during its lifetime, which encapsulates
one or more application containers, and, if needed, shared storage volumes.

Each of the master nodes comes with three parts:

• Scheduler: Selects a worker node for newly created Pods which are not as-
signed to a node yet.

1

• API Server: Exposes the Kubernetes API which is used for all automatic and
manual management tasks.

• Controller Manager: Manages several administrative processes. The most
important ones are:

• Node controller: Removes worker nodes from the cluster and monitors the
status of the existing nodes.

• Job controller: Manages the Pods executing finite tasks (jobs).
• Endpoints controller: Connects Pods to services. A service represents a

group of Pods and exists longer than the Pods themselves, which may be
restarted or redeployed. It provides a stable IP address and load balancing.

• Service account and token controllers: Assigns API tokens and default ac-
counts to new cluster namespaces (virtual clusters within a physical clus-
ter).

Additionally, each master node typically runs an etcd instance for the cluster
data.

2

Each worker node includes the following components:

• Kubelet: Communicateswith theAPI server andmanages thePods on the node
(including volume mounts, health checks, secrets, etc.).

• Kube-Proxy: Enforces rules for network communication of Pods from inside
and outside of the cluster.

• Container Runtime: Each worker node requires a container runtime for the
application containers. Kubernetes supports several: Containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface) –
Docker is deprecated with Kubernetes version 1.20.

1.2 The Challenge
Once we deploy our applications they consume resources like CPU, memory,
network, or disk. The promise of Kubernetes is that the mapping of applica-
tion resource demand to real existing hardware respective virtual machines is
much easier. Yes, it is easier, but still a challenge. Due to the complexity of the
applications, their programming languages and frameworks, their deployment
and demand, etc., a wide range of controls have been created to choose from.
Kubernetes supports means like Pod Disruption Budget, Taints and Tolerations,
Resource Limits, Resource Requests, a Horizontal Pod Autoscaler, and many
more. Linux itself adds the Completely Fair Scheduler (CFS), Control Groups,
and Namespaces.

Our main goal in using Kubernetes is automation without interaction with an
administrator. All thesemeans, configuration parameters, and settings define how
applications can run in an environment that is constantly changing, while the
application itself is constantly changing.

3

2 Frequently Asked Questions
Frequently asked questions about how things work.

2.1 What Is a Completely Fair Scheduler?
A Completely Fair Scheduler (CFS) is a proportional share process scheduler
that proportionally divides CPU time (CPU bandwidth) on a Linux box between
groups of tasks (containers and/or Pods) according to the priority/weight of the
task or the shares assigned to the Pods. Its goal is tomaximize overall CPU utiliza-
tion while maximizing interactive performance. Normally it is not possible that
a user process blocks all CPU resources exclusively. Instead, the CPU resource
distribution is weighted according to current demand.

2.2 What Is a cgroup?
Control groups are a Linux feature that allow processes to be organized into
hierarchical groups whose usage of CPU and memory can be controlled.

Kubernetes for example creates a dedicated cgroup kubepods,

• containing cgroups that are defined by the quality of service (QoS) classes
• containing cgroups for the respective Pods
• containing cgroups of the Pod’s containers

However, due to the hierarchical nature of cgroups, the cgroup kubepods is not
the only deciding factor in howCPU resources are allocated to containers and the
rest of the system.

2.3 Who Uses the Pod’s Resource
Requests Setting?

Above all the Kubernetes scheduler. It searches available nodes based on the given
Pod resource CPU and memory requests. If it finds one, the Pod is scheduled to

5

that node. If not, it checks if it can evict Pods based on their quality of service class
or their Pod priority and preemption to gain more free space. If it is successful,
the Pod is scheduled and started; if not it stays in state pending.

Also, this kind of pending state is a sign that the cluster ran out of resources. It
can be used to initiate the addition of more worker nodes to the cluster.

2.4 Do Resource Requests Only Affect
the Kubernetes Scheduler?

Actually no. Once the Pod is started, the CPU resource requests are also used to
set the CPU share parameter of the CFS (defined by cgroups) for every container
running in that Pod. CPU shares contain an integer value that specifies a relative
share of CPU time available to the containers in a Pod. So if you set the CPU
resource request of container A to 200mand of container B to 100m, Awill receive
twice the CPU time for tasks as container B (full container load).

However, since the absolute amount of CPU is dependent on the overall demand
of all Pods and processes on the node, the actual amount of CPU is difficult to
predict. Resource requests should therefore not be confused with a limit; they are
rather a weighting. So container A can get even more CPU than 200m if CPU is
available and requested by the processes running in A. On the other hand, if there
is another Pod on the same node with one container and a request of 500m, the
CPU is weighted between the two Pods by 3 to 5 (100m + 200m versus 500m)
under full container load.

If you do not set any Resource Request in your Pod YAML, the CPU share is set to
a very low value (at the time of writing it is hardcoded to 2), and your container
will get almost no CPU (again at full container load. However, this can be a valid
setting for batch processing Pods which only get CPU when other application
Pods do not need it).

6

2.5 Is There a General Difference
between CPU andMemory?

Besides the fact that these are different kinds of resources? Yes. Memory is a so-
called incompressible resource. This means that every running process always
sees the entire memory of the node, no matter what limits you set. However, it
can only use the limited amount, because if it consumes more, it will simply be
killed by Linux (OOM Killer).

CPUhowever is a compressible resource. So processes can be throttled.Of course,
you can only use a CPU completely or not at all. For this reason, the CPU is
distributed over a share of so-called CPU cycles. If you set the CPU limit to 50%
of a core, the process will only be allocated 50% of the CPU cycles of one core.

2.6 HowDoWe Limit ContainerMemory?
Use memory limits, which are then propagated to a cgroup parameter of the
container. Every process sees, however, the entire node memory. To effectively
avoid OOM killing, we must rely on the framework that is used to finally limit its
memory usage.

For instance the Java base image openjdk:8u191-jdk has built-in docker support.
The JVM reads out the value of its cgroup memory limit parameter and sets the
MaxHeapSize to 25% of the given memory limit, which is quite conservative. This
is of course only the default and can be customized, with XX:MaxRAMPercentage
for example. However, this limits only the Java heapmemory.Whenever we create
an object, it is always created in heap memory and under normal circumstances
this is the largestmemory. But it is not the only one. Shares between them depend
on the type of application. To avoid OOM killing we have to include a memory
spare and set theMaxRAMPercentage to ~80% for example. This leads to a, for sure
required, over-provisioning of ~20%of thememory defined by the Java framework
itself.

7

2.7 HowDoWe Limit Container CPU?
The CPU is a compressible resource, so it can actually be throttled. We can use
CPU limits for this. Of course, a process can have the CPU or not. That’s why CPU
limits are implemented by CPU bandwidth control with cpu.cfs_period_us and
cpu.cfs_quota_us parameters. These properties define a period, which is usually
1/10 of a second, or 100,000 microseconds, and a quota which represents the
maximum number of slices in that period that a container process is allowed to
run on the CPU.

Depending on the CPU cycles required to calculate for example a response by
a service, some calls fit into that period, some do not. That is the reason why
we see that not all service latencies are increased but only some (e.g. in the 90%
percentile). However, latencies will increase while we reduce CPU limits. Also,
some containers have a CPU-intensive initialization phase at startup. CPU limits
also cover this phase, so that the startup times until the container is ready for
operation increase.

8

2.8 What Is Overprovisioning?

Overprovisioning is used to provide more CPU, memory, disk, or network re-
sources than necessary, typically because clusters have to be big enough to handle
peak demand. A certain safety buffer should be included, because you never know
exactly how an application will respond to a load that you cannot predict. This is
usually the case for web traffic. It also depends on the requirement for MTTR1 to
respond fast because of node failures, for example.

1mean time to recover, e.g. after a Pod crashed

9

2.9 What Is Overcommitment?

The Kubernetes scheduler ensures that the sum of all resource requests is lower
than the node capacity. If we specify resource limits that are higher than resource
requests, then the sum of the limits minus the node capacity is the amount of the
overall overcommitment.

The idea of overcommitment may seem dangerous because containers will crash
if, for example, memory is used up. In actual practice, however, overcommitment
is a kind of compromise for workloads that need a much higher limit while
initializing than while operating. In addition, allowing overcommitment appears
to increase the average resource utilization of the nodes.

2.10 How Is High Load Noticed?
High load and the need for autoscaling are detected via resource metrics. The
simplest way to provide such metrics is via the Kubernetes own metrics server
– a lightweight, in-memory, Kubernetes native component, built exclusively for
autoscaling purposes. Many cloud providers include it in their default setup. It
queries each node’s Kubelet instance for CPU and memory metrics of each Pod,

10

aggregates them, and provides them to other components via the metrics.k8s.io
API. It’s also possible to provide additional metrics via a monitoring solution like
Prometheus.

2.11 How Is High Load Responded To?
First, applications use their thread pools or other framework-related means to
respond to higher loads. In any case, the processor load of the application will
increase. With this increase, latencies and response times will increase. This
behavior is of course not linear to the processor load, but the CPU is a good
indicator.

CPUandmemory aremonitored via themetrics server. They can be used to trigger
up- or downscaling via a specialized autoscaler, depending on your configuration.
Basically, there are three options:

• Add more Pods for the application (Horizontal Pod Autoscaler).
• Increase the resource demand of the application Pod(s) (Vertical Pod Au-

toscaler).

11

• Add more nodes to the cluster to make more room for Pods (Cluster Au-
toscaler).

2.12 What Is a Horizontal Pod
Autoscaler?

This is a fast response to higher CPU load by theHorizontal Pod Autoscaler (HPA)
that creates instances of Pods. The HPA automatically scales the number of Pods
that are defined by a deployment or StatefulSet, for example. Once the autoscaler
adds additional Pods, the number of available resource requests and limits of the
application to which the Pod belongs also increase. The HPA is thus a kind of
autoscaler for application-based resource utilization.

2.13 What Is a Vertical Pod Autoscaler?
A Vertical Pod Autoscaler (VPA) frees users from the necessity of setting up-to-
date resource limits and requests for the containers in their Pods. It will set the
requests automatically based on usage and thus allow proper scheduling onto
nodes so that the appropriate resource amount is available for each Pod. It will
also maintain ratios between limits and requests that were specified in the initial
container configuration.

2.14 What Is a Cluster Autoscaler?
A Cluster Autoscaler is a tool that automatically adjusts the size (amount of
worker nodes) of the Kubernetes cluster. Current implementations react to Pods
that are unable to be deployed (pending) due to resource restrictions. So on a busy
cluster, a scaling request by an HPA may result in a scaling request by a Cluster
Autoscaler, which typically takes minutes instead of seconds.

12

2.15 What Is a Cluster Proportional
Autoscaler?

A Cluster Proportional Autoscaler watches over the number of schedulable nodes
and cores of the cluster and resizes the number of replicas for a specific resource.
This may be desirable for applications that need to be autoscaled with the size of
the cluster.

2.16 Are Containers Secure?
Typical container runtimes start the processes of a container as normal Linux
processes. They are isolated from other processes but not virtualized. Container
processes share the kernel, I/O, network, and memory. One result of this is that
a compromised container can also threaten other containers or the host itself.
So the answer is no if you compare it to per application-process virtualization.
However, since Linux processes have to be secure anyway, you can also say yes
if you take care to restrict process capabilities and application and base-image
vulnerabilities.

2.17 What Is a RuntimeClass?
RuntimeClass is a feature for selecting the container runtime configuration. The
container runtime configuration is used to run a Pod’s containers. Different Run-
timeClasses for different Pods are possible to provide a balance of performance
versus security. For example, if part of your workload comes from a third-party
vendor (which you consider an untrusted component), you can run it with a con-
tainer runtime that uses hardware virtualization (e.g. Kata Container, resulting
in a small performance and resource penalty). Your own workloads are run by
a standard runtime (e.g. Containerd, which is fast and with little overhead). Or
something in between, for example a runtime (gVisor) that tries not to be a VM
but still almost achieves its security by implementing a system API based directly
on host system API primitives.

13

2.18 What Is a Probe?
A probe is a manually implemented container endpoint (Socket, HTTP, or binary
execution) that allows the Kubelet to check the internal state of the container.

2.19 What Is a Pod Disruption Budget?
A Pod Disruption Budget limits the number of Pods of a replicated application
that are down simultaneously from voluntary disruptions. Typically there are no
automated voluntary disruptions, but they occur through manual intervention.
However, Pod Disruption Budgets cannot prevent involuntary disruptions from
occurring (node crashing, VM issues, etc.).Writing disruption-tolerant workloads
is essential anyway because of the up- and downscaling of clusters and Pod
replicas.

14

3 Kubernetes Probes
A Pod is the smallest unit in Kubernetes. It is a container for containers that are
running in a shared context like the same host, same IP, etc. The status of the
containers can be checked by so-called probes. The respective results are then
aggregated to the status of a Pod by Kubernetes. A probe is a diagnosis that is
made regularly by the Kubelet on a running container. To perform this diagnosis,
the Kubelet calls an endpoint implemented by the container process or executes
a binary in the container. The Kubelet can perform and react to three types of
probes: readiness, liveness, and startup.

Typical questions around probes are:

• Do we need separate endpoints for liveness and readiness probes?
• Do we always need all of them?
• Should the probes code-check the availability of upstream services?
• How are exceptions handled?

But first we need to understand how the lifecycle of a Pod is defined.

3.1 Phase and State of a Pod
A Pod’s lifecycle is divided into two parts: a Pod phase, which is a simple, high-
level summary of where the Pod is in its lifecycle, and the Pod state, which is

15

an array of conditions through which the Pod has or has not passed. In addition
there is a container state. A state is quite simple and can be waiting, running,
or terminated. The Pod phase can be viewed by issuing kubectl get pods for
example. The detailed Pod state can be seen bymeans of kubectl describe pod

<Pod name>.

But what does this mean for the readiness of a Pod? If a Pod is in phase running,
it means that at least one container is in the state running. But in the case of a
multi-container Pod, it is not sufficient to reflect the state of only one container.
Actually, the Pod condition is only ready once all containers are in state running.
If this is the case, the Pod can be added to the load-balancing pool of all matching
services. Otherwise, it is removed.

This procedure ensures that most cases of container creation or deletion are
automatically handled correctly. The only thing we have to take care of is the
time between container state running (that Kubernetes can use directly) and the
ability to actually serve requests by the application code. This initialization time
can be reflected by the readiness probe. In these simple cases it can use the same
endpoint as the liveness probe.

3.2 Readiness Probe
Periodic probe of container service readiness. Containers will be removed from
the service load balancer if the probe fails.

Recommendation: Use the readiness probe…

• … during the container startup phase
• … if an application takes itself down for maintenance

Question: Should a readiness probe check the application dependency?

3.2.1 Scenario

Besides its own ability to answer requests, the readiness probe of three replicas
of an application is checking access to an upstream database service. In case of

16

a database unavailability, all application replicas are then removed from load bal-
ancing since their dependency fails. In effect, the application is then offline (with
no difference to “all Pods are failing” or to “deployment is deleted”). Imagine that
all services in a system behave in the same way. The overall result is a propagation
of faults that eventually become a system failure. The attempt to avoid this
propagation is the main reason for not checking dependencies. Remember also
that readiness in the sense of Kubernetes means: technically ready, not business
ready. The probe only signals whether or not the Pod is added to the load balancer.
A removed Pod always means failure, and this can never be a valid business
status.

What should happen if the database is not available? Asmentioned above, to avoid
fault propagation, it is not advisable to simply put the readiness probe to false.
One option is to implement some sort of degraded mode. For instance, a REST
service answers only some requests that can be answered from cache or with a
default, while respondingwith a 503 (Service Unavailable) onwrites (PUT/POST).
For sure we have to take care that downstream services are aware of this kind
of degraded mode (in general, the downstream services should in any case be
resilient to faulty calls to upstream services).

For the sake of completeness: A disadvantage of the degraded modes may be that
they tend to end up with a kind of distributed degraded mode that is sometimes
difficult to handle. So replying with 503 for everythingmay be a good option too.

How are exceptions handled? If the application code encounters an unexpected
and unrecoverable internal exception while calculating the readiness response,
it should crash on its own. This is because it can be expected to be a serious
container-internal issue that has no connection with external dependencies.

3.3 Liveness Probe
Periodic probe of container liveness. Container will be restarted if the probe
fails.

The liveness probe should be used if:

17

• The process in your container is unable to crash on its own whenever it en-
counters an issue or becomes unhealthy.

• Application code is running a framework where it is unable to control its
execution (e.g. servlet container).

Concerning the verification of upstream dependencies, the same applies as for
the readiness probe. Liveness probes should only help to determine whether the
container process is responding or not. If the container process is able to detect
its unhealthiness on its own, it can simply exit.

3.4 Startup Probe
Indicates that the Pod has successfully initialized. If specified, no other probes
are executed until this completes successfully. Similar to the liveness probe the
Pod will be restarted if it fails.

This (alpha feature) probe has been introduced to reflect long boot times typ-
ically experienced by legacy applications or technologies with uncomfortably
long initialization times such as Spring Boot. The usage of the liveness probe
alone forces us to take these delays into account and it can be tricky to set up
parameters without compromising the fast response to the unhealthiness of ap-
plications. So if your container normally starts in more than initialDelaySeconds
+ failureThreshold × periodSeconds, you should specify a startup probe and use
the same endpoint as the liveness probe.

18

4 Recipes
The following are some general rules for dealing with resource challenges.

4.1 Avoid Receiving Traffic during
Shutdown

Kubernetes is a distributed system. From this follows that some actions are taken
in parallel while deleting a Pod. So there is a possible time window where a Pod
gets traffic while it is being deleted (or being in a shutdown process). A possible
workaround is to add a preStop lifecycle hook to the Pod specification:

spec:

containers:

- name: main-container

image: my-main-image

lifecycle:

preStop:

exec:

command: ["sh", "-c", "sleep 20"]

The selected sleep should be long enough for the app to execute all remaining
tasks and responses. In the example case above, the Pod is immediately removed
from Kubernetes Service, but does not receive a SIGTERM until 20 seconds have
expired.

4.2 Scenario Spring Boot/JVM
Applications

JVM applications are sometimes difficult to handle due to their high resource
usage during initialization. It is also difficult to predict and limit memory require-
ments.

19

4.2.1 Why DoWe Usually Have to Overprovision a JVM
Container?

• JVM memory is divided into heap, non-heap, and other JVM internal memory
(for garbage collector, IO buffers, metadata, native memory, Java threads, etc.).

• The Xmx option only limits heap. So the overall memory requirement must be
determined by testing and is definitely higher than Xmx.

• The default JVM container detection sets Xmx to 25% of the resource limit
setting formemory (depending on the JVM and for a large amount ofmemory).

For most cases, this default value for Xmx is too pessimistic and leads to costly
overprovisioning. However, the total memory consumption of a JVM application
can be estimated to be at least 25%higher than theXmx setting (for a large amount
of memory).

How do we get the JVM, resource limit, and resource request settings?

Step 0: PreliminaryWork

First, we need to define what availability is in the context of our application:
Which part of the application must respond in what time if we call it available,
etc.

Define availability:

• Define availability for the whole platform (incl. SLOs1 for traffic, latency, fail-
ure rate, MTTR).

• Break it down into individual service SLOs.
• Use the following tests to define resource limits and number of replicas.

The JVM has some embedded container awareness. Its default configuration is
very pessimistic, so we should adopt it to get a realistic scenario.

1service level objectives, which are used to define the expectations for the behavior of the
application

20

Customize JVM container awareness:

The JVM parameter MinRAMPercentage allows Xmx to be set for a small amount
of memory (less than 256MB and whenMaxHeapSize / -Xmx is not set) to 50% as
default. This is OK. For apps with the requirement for a large amount of memory
(greater than 256 MB) set theMaxRAMPercentage parameter to 75%.

Both values are only a good first attempt and need to be validated by tests.

Step 1.1: Test without CPU Limits

To get an impression of how the application consumes memory and how its
latencies behave we have to do some load tests.

Get application characteristics by testing…:

• … with the best coverage possible
• … with real requests as test data (e.g. httperf with replayed access log)
• … to get maximum traffic possible while keeping compliance with the service

SLOs

Step 1.2: Test with CPU Limits

The goal of this test step is to achieve the smallest CPU consumption possible
(CPU limit should be as low as possible because we do not want to waste re-
sources) and to get an idea of how many instances or replicas of an application
are required.

1. Test/find the lowest CPU limit for MTTR SLO compliance (important, be-
cause JVM/Spring might need more resources for booting than for normal
operation).

2. Test/find the lowest CPU limit when replaying the access log in real time for
compliance with latency and traffic SLOs.

Some applications do not support more than one instance, due to issues with the
database, synchronization, HTTP sessions, or whatever. So if your app does not
support any replicas to achieve high availability, you are already done – just take

21

the higher value of the two. However, such a hard limit of instances may require
code and/or architecture changes to the application to get it more cloud-native.

If your app does support replicas, high availability comes with replicas and the
MTTR requirement is already met. When it comes to the number of replicas to
use we can consider the n+2 rule here, since Pods are logical hosts. So, if one Pod
gets updated and one is allowed to crash, the remaining replicas must still be able
to be compliant with the service’s SLOs. Take the second value to estimate the
number of Pod replicas required.

Step 2: Evaluate JVM Settings

Influence of CPU shares and memory limit on Garbage Collection:

Based on the available CPUs andmemory, the JVM tries to select the best suitable
Garbage Collector. Historically, the JVM knows two modes: A client mode for fat
client applications and a server mode for long-running services.

Although not used in this way anymore, these modes influence the Garbage
Collector selection. The JVM selects one of these modes automatically based on
the CPU and memory.

Server mode is selected when the JVM has 1 CPU or more and 1792m or more
memory. Everything below the client mode is selected. In client mode the JVM
chooses the serial GC, in server mode the default G1GC (Garbage First Garbage
Collector).

There are two ways to influence this decision manually as the CPU share is not
equal in the container world just to the CPU time of one CPU. So even with a CPU
share of 1024, the application could use several parallel threads.

• Option 1: Always run the application in server mode with
-XX:+AlwaysActAsServerClassMachine. This indirectly also sets the default
GC -> G1GC.

• Option 2: Set the Garbage Collector manually with -XX:+UseG1GC.

22

Step 3: Set Resource Requests and Limits

Finally, we can choose the required settings. In general, setting memory lim-
its/requests is more critical than setting CPU limits/requests. The reason is that
memory is a hard limit that can lead to “out of memory” exceptions and crashing
of containers and/or nodes. Wrong CPU limits “only” lead to increasing latencies,
which is in some way acceptable.

However, the chosen values are only a first attempt and must be further tested
and monitored.

• Use the CPU limits from 1.2 Test with CPU limits.
• Limit memory to themaximumRAM demand for our application container we

got from testing. Plus a spare of about 10%.
• Use the same values for resource requests to achieve theGuaranteed Quality

of Service Class (avoiding Pod eviction due to resource constraints).

4.3 Different Types ofWorkloads
In addition to the different priorities of each Pod, there are also different types of
workloads to consider:

• Run to completionworkloads like (backup) jobs, analytics, and calculations are
automated through the resource types Jobs and CronJobs. Often the duration
is not essential. So, set the CPU request to 1 so that the Pod does not get CPU
shares when the total load on the node is high.

• Constantly runningworkloads until update/crash/downscaling etc. break down
into:

• Stateless workloads are automated through deployments. To benefit from
features like rolling updates a deployment should even be used if the replica
is 1.

• Stateful workloads are automated by StatefulSets. They should be used by
workloads that typically require ordered scaling and stable network identi-
fiers (and persistence).

23

• Workloads with unique resource constraints (GPU, significantly more RAM or
CPU than normal, etc.) should use a segmented cluster with specific worker
nodes by configuring taints and node labels.

4.4 Planning Your Cluster
A great resource for planning the cluster is the Instance Calculator at
https://learnk8s.io/kubernetes- instance- calculator. However, there are
some additional ways of improving upscaling, deployment, and cluster size
estimations.

4.4.1 Overprovisioning Recipes

Overprovisioning at Cluster Level

It makes sense to overprovision clusters when…:

…we deploy certain workloads with frameworks that, for example, have higher
resource requirements during boot phases than during normal operation.
For Kubernetes this is achieved with setting ResourceLimits higher than the
ResourceRequests. But this kind of overcommitment is dangerous. So additional
overprovisioning can be risk mitigation.

…we are using HorizontalPodAutoscaling for some deployments. The reason for
the issues here is how the cluster autoscaler usually works. It monitors the status
of Pods and adds additional worker nodes when a Pod remains in pending state,
because the cluster is running out of resources. In this case, it spawns a new
node. Sounds good? Well, spawning nodes take minutes instead of the intended
(milli-)seconds when spawning a Pod. This may be an issue in very dynamic
environments. One solution could be to create a spare on each node and thus
separate the creation of new nodes from the upscaling of Pods.

24

https://learnk8s.io/kubernetes-instance-calculator

Overprovisioning clusters with overprovisioning Pods

Oneoption to overprovision clusters is to add an overprovisionPodon every node.
This Pod contains only a pause container, that simply calls pause on the Linux OS
(pause causes the calling container process to sleep until a signal is delivered, so
it does not consume any runtime resources).

The trick is to assign these overprovision Pods a lower priority (PriorityClass)
than regular Pods so that they are evicted from their node as soon as resources
become scarce (e.g. by scaling up a regular deployment). The pending state of the
evicted overprovision Pod now initiates the scaling of worker nodes, although the
regular Pod could be started immediately.

As shown in the figure, if we set the ResourceRequest for a memory parameter
of the overprovision Pod to 1GB, we’ll get a memory overprovisioning of ~12%.
We can keep the dynamic nature of the cluster while scaling up and down by
using a tool called cluster propositional autoscaler. It watches over the number of
schedulable nodes and cores of the cluster and resizes the number of replicas for
the overprovisioning Pods in this case. Details of its configuration can be found

25

here: https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/
FAQ.md#how-can-i-configure-overprovisioning-with-cluster-autoscaler

Overprovisioning at Pod Level

Typically, the application’s use of resources such as memory or CPU changes
depending on the type of functionality (e.g. different queries) and its load. So
it’s obvious that we have something like average resource utilization and peaks.
So how do we treat these peaks? The solution is to define the average, typical
resource usage and a kind of overprovisioning on Pod level as spare. What are the
means we can use?

• Set the memory limit below request? Makes no sense, because containers get
killed if they exceed their limit. So we do have a spare in this case, but it cannot
be used by the application.

• (Mis-)use the Pod Overhead setting? Possible, but this is a Pod-level attribute,
not container level. On the other hand, if a couple of similar Pods consist of a
main container and some sidecars it is possible to add a RuntimeClass instance
for these Pods with a (Pod)Overhead, hence overprovisioning, for the whole
Pod while keeping guaranteed QoS (same value for limits and requests).

• Adopt framework settings (e.g. JVM: Refer to Why Do We Usually Have to
Overprovision a JVM Container?).

• Adopt tool settings to keep memory or CPU below ResourceLimits (e.g. Mon-
goDB, Prometheus).

4.5 Deployment Recipes
There are several deployment strategies, somewith downtime like Recreate, some
without like Rolling Update or Canary. Some releases are even shifted to testing
in production by using feature toggles.

But when we look at production, there is a certain hierarchy of how we want to
release new versions.

26

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#how-can-i-configure-overprovisioning-with-cluster-autoscaler
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#how-can-i-configure-overprovisioning-with-cluster-autoscaler

First of all, Recreate is the cheapest and simplest strategy. If we use Recre-
ate, we have time to remove the outdated deployment, do cleanup, update
the DB schema, ETL and so on.

So it’s certainly a good idea that your application architecture and availability
SLOs allow for as many Recreate deployment strategies for their application Pods
as possible. We can accomplish this by defining a practical/pragmatic availability
(which we break down to individual service SLOs) and by applying the CQRS2

and/or the Microservices pattern.

However, if downtime is an issue, and for some services it will be unavoidable,
we need to deploy differently. Basically we have two to choose from: Rolling
Update or Canary release. In the context of Kubernetes, Rolling Update is a built-
in feature and refers to updating the container image version of a deployment
or a StatefulSet. So determine how many Pod instances are required to meet the
specified service SLOs and set the Pod Disruption Budget accordingly.

During such a rollout, however, the amount of traffic such a new version receives
is tied to the number of instances. If this is too coarse-granular, other tools
must be used. That’s why Service Meshes introduced a virtual service concept
to allow a routing-based Canary release. Virtual Services move user traffic from
one deployment in version V1 to another in version V2, a kind of fine-grained Blue-
Green release while being independent of the Kubernetes Deployment itself.

4.6 Cluster Sizing Recipes
The size of a cluster is an important cost factor in production (besides storage,
managed services, and traffic). So the size of a cluster has to be weighted between
overprovisioning (sufficient spare space for the applications tomitigate high load)
and cost. There are somebasic rules of thumb to estimate cluster size and required
size increase on higher load.

2Intro to CQRS by Martin Fowler: https://martinfowler.com/bliki/CQRS.html

27

n+2 Rule

This figure shows response time curves of systems with 1, 2, 4, 32, and 64 servers.
The so-called knee (sometimes explained by the queuing theory) is known to be
at ~80% utilization. While this is only valid for low resources (which is typically
the case for nodes used as cluster nodes), you shouldn’t run your servers past
that point or performance will begin to degrade.

The n+2 rule says that if we generalize this 80% target and one node is unavailable
because it gets maintenance updates, and one node is allowed to fail then the
remaining nodes should only have a resource utilization of maximum 80%.

For example, this results in a normal operation of a maximum ~50% resource
usage for five nodes (3*80%/5). So for a machine type with two vCPUs a sum of
Kubernetes ResourceRequest/ResourceLimit of five vCPUs are usable. However,
this is just a first estimation.

The Square Root Staffing Law

The square root staffing law is derived from queuing theory and is useful for
getting an estimate of the capacity you need to serve an increased volumeof traffic.
It predicts that the spare capacity needed for a specified QoS grows in proportion
to the square root of the traffic increase.

For the scenario taken from n+2 Rule, we have five nodes with an overprovision
of 50%. In other words, 2.5 fully loaded nodes and 2.5 spare nodes. If for example

28

we assume a 200% increase in traffic, we get an estimate of 2.5 * 200% + 2.5 *
SQR(200%) = 5 fully utilized nodes with ~4 nodes as reserve = 9 nodes.

4.7 Cluster Segmentation
The purpose of Kubernetes is resource abstraction. This allows us to focus on
applications rather than hardware such as worker nodes or node types. The more
homogeneous the cluster, the better we can achieve this goal. However, some-
times the traditional VM zone pattern plays a role, where we separate frontend
VMs from backend VMs via different networks and firewalls in between. But the
segmentation ofworker nodes should not be applied to a node abstraction pattern
like Kubernetes. The right equivalent concept is Network Policies, which are
able to implement a logical zone/project/team/role concept, including firewalls,
around Pods. It is part of the necessary persuasion work to ensure that Network
Policies are accepted by security departments; after all, traditional VMs also run
on the same hardware. The discussion of container security versus VM security
might be an important discussion, though.

A more reasonable justification for segmenting a cluster is different hardware
requirements by very special workloads, such as machine learning or CI/CD. ML
might require hardware with GPUs; CI might require much more continuous
memory than the rest of the application. Kubernetes has twomeans for that: taints
and tolerations and node labels. So, use node labels to flag the existence of specific
hardware and pin the respective workloads to these nodes via labels (attribute
nodeSelector). If it makes sense to reserve these nodes exclusively for special
workloads, use a taint to allow the node to reject other Pods that do not tolerate
this taint.

4.8 Availability Rules
In general, high availability is generated by using the concept of node or Pod
replicas. However, availability must be addressed on several levels.

29

First, the application or tool used must be able to handle replicas (and a round-
robin load balancer up front). In particular, stateful applications or applications
that use HTTP sessions for example are often initially unable to do so.

Second, using cloud vendor zones can increase availability because it is unlikely
that more than one zone goes down simultaneously. However, this has implica-
tions for stateful applications with volumes. Typically, volumes cannot be moved
between zones. This results in the need for more than one node per zone (at least
two nodes) to create high availability in the zone itself, and a node autoscaler that
takes this volume limitation into account.

Rules:

• If the Recreate deployment strategy is possible (this is the simplest strategy
from a production point of view), there is no need for replicas. At least when
it comes to availability. For performance reasons, this may still be appropriate.

• The use of zones and replicas per zone is mostly recommended. Most tools
like Kubernetes and node-autoscaler support this concept. On the other hand,
if the availability of one zone is sufficient it may be simpler to use only a
single zone while keeping a spare cluster/tool/application on another zone
as hot standby. In this case, the simplicity gained, required availability, and
switchover/backup/recovery times must be weighed against each other.

• If you use tools (like Kafka or databases), ensure that the configuration of its
replicas really increases availability. Otherwise, you end up with dependent
replicas that significantly reduce availability instead of increasing it.

• Use Pod anti-affinities (that’s default) to ensure that replicas are running on
different worker nodes. Otherwise, it is still high availability on Pod level
(e.g. during Rolling Update), but does not help if the entire node dies.

4.9 Node Type Rules
If you are creating a Kubernetes cluster, you must specify the size of the worker
nodes. Of course, the many different types of workloads play an important role.
It is therefore not easy to come up with generally applicable rules.

However, the following statements can be made:

30

Bigger and therefore fewer nodes:

• Less inter-node traffic
• Less control plane overhead, but more overhead on node due to Kubelets

container probes, cAdvisor stats collection, etc. (more Pods per node)
• Typically lower costs per workload, but bigger increments (worker node up-

scaling)
• Allows running resource-intensive workloads
• Larger impact overall on availability if a node dies
• Typically higher IOPS3 per node

Smaller and therefore more nodes:

• Smaller increments but more inter-node traffic, etc.
• Lower Pod count limits due to instance type restrictions (e.g. AWS? a t2.micro

has a max. of four Pods)
• Typically lower IOPS per node

Some general rules:

• It is always better not to segment the cluster.
• For a few workloads with higher resource usage (e.g. CI pipelines, machine

learning) without direct impact on application availability, consider cluster
segmentation with node labels and taints on one or two bigger node types.

• For bigger workloads (> 500MB) choose bigger machine types (> 8GB) and/or
machine types with higher RAM vs CPU weighting.

• For smaller workloads (< 100MB) choose smaller machine types (< 8GB)
and/or machine types with higher CPU vs RAM weighting.

• Forworkloadswith heavy file-IO and/ormoreCPU load choose biggermachine
types.

• It rarely makes sense to use bare metal machines with for example 128GB RAM
and 64 cores and Pods using 10MB RAM each.

3input/output operations Per second

31

4.10 Pod Priorities
The Pod’sQuality of Service attribute is derived from its configuration of resource
requests vs. resource limits. Kubernetes decides which Pod can be evicted once
the node gets into a low memory condition (by other components on the node or
by other Burstable Pods usingmorememory defines in its resource requests). The
order of eviction is: Best Effort Pods are evicted first, followed by Burstable Pods.
Guaranteed Pods will never be evicted because of another Pod’s resource con-
sumption (in contrast to node pressure eviction, where this can still happen).

However, if Burstable Pods fill up a node, they will not be evicted even by applying
Guaranteed Pods. If there is no space on the cluster, they remain in pending state
until enough space is available again.

QoS is therefore not a suitable means of distinguishing between important
and less important application components.

If less important Pods are to be displaced by more important Pods, the so-called
Pod Priorities must be used. This guarantees that a higher-priority Pod will be
deployed (e.g. in case of automated upscaling) at the expense of lower priorities
(or no priority) if necessary.

Rules:

• Use as many Guaranteed Pods as possible (resource requests equals resource
limits).

• Keep in mind that Burstable/Best Effort Pods are eligible for eviction due to
resource pressure on the node.

• Distinguish between important and less important Pods based on availability
requirements and set Pod Priorities accordingly.

32

About the Authors

Christopher
Schmidt

@fakod

Christopher is a senior consultant at innoQ Schweiz
GmbH.Hehas been at home in software development
for more than 20 years. During this time he has
successfully brought numerous software and
modernization projects into production in various
roles. Christopher’s focus is on current front / back-
end technologies and highly scalable architectures.
Kubernetes is his passion.

Christine Koppelt

@ckoppelt

Christine Koppelt works as a Senior Consultant at
INNOQ Germany. Her focus is on the implementa-
tion and modernization of digitization projects for
medium-sized companies. She is particularly inter-
ested in software architecture, infrastructure and
data engineering.

33

	1 Intro
	1.1 How Does Kubernetes Work?
	1.2 The Challenge

	2 Frequently Asked Questions
	2.1 What Is a Completely Fair Scheduler?
	2.2 What Is a cgroup?
	2.3 Who Uses the Pod's Resource Requests Setting?
	2.4 Do Resource Requests Only Affect the Kubernetes Scheduler?
	2.5 Is There a General Difference between CPU and Memory?
	2.6 How Do We Limit Container Memory?
	2.7 How Do We Limit Container CPU?
	2.8 What Is Overprovisioning?
	2.9 What Is Overcommitment?
	2.10 How Is High Load Noticed?
	2.11 How Is High Load Responded To?
	2.12 What Is a Horizontal Pod Autoscaler?
	2.13 What Is a Vertical Pod Autoscaler?
	2.14 What Is a Cluster Autoscaler?
	2.15 What Is a Cluster Proportional Autoscaler?
	2.16 Are Containers Secure?
	2.17 What Is a RuntimeClass?
	2.18 What Is a Probe?
	2.19 What Is a Pod Disruption Budget?

	3 Kubernetes Probes
	3.1 Phase and State of a Pod
	3.2 Readiness Probe
	3.3 Liveness Probe
	3.4 Startup Probe

	4 Recipes
	4.1 Avoid Receiving Traffic during Shutdown
	4.2 Scenario Spring Boot/JVM Applications
	4.3 Different Types of Workloads
	4.4 Planning Your Cluster
	4.5 Deployment Recipes
	4.6 Cluster Sizing Recipes
	4.7 Cluster Segmentation
	4.8 Availability Rules
	4.9 Node Type Rules
	4.10 Pod Priorities

	About the Authors

